VŠTE:ZAM Základy matematiky - Informace o předmětu
ZAM Základy matematiky
Vysoká škola technická a ekonomická v Českých Budějovicíchzima 2012
- Rozsah
- 0/2. 2 kr. Ukončení: z.
- Vyučující
- RNDr. Jaroslav Krieg (cvičící)
- Garance
- RNDr. Jaroslav Krieg
Katedra informatiky a přírodních věd – Ústav technicko-technologický – Rektor – Vysoká škola technická a ekonomická v Českých Budějovicích - Rozvrh seminárních/paralelních skupin
- ZAM/S01: Čt 9:55–11:25 A6, J. Krieg
ZAM/S02: St 17:55–19:25 B4, J. Krieg - Předpoklady
- FORMA(P)
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
Předmět si smí zapsat nejvýše 80 stud.
Momentální stav registrace a zápisu: zapsáno: 0/80, pouze zareg.: 0/80 - Cíle předmětu opírající se o výstupy z učení
- Cílem předmětu je doplnění znalostí z matematiky na úroveň požadovanou v úvodním kurzu matematiky v předmětu MAT_1. Student po úspěšném zvládnutí předmětu umí upravovat algebraické výrazy, pracovat se složenými zlomky a exponenciálními výrazy. Zvládá řešení rovnic a nerovnic i s absolutní hodnotou, řešení iracionálních rovnic, kvadratických rovnic, řešení soustav lineárních rovnic, exponenciálních a logaritmických rovnic. Umí pracovat s logaritmy, zná goniometrické funkce a jejich vlastnosti, goniometrické rovnice, lineární lomené funkce, nepřímou úměrnost, polynomické funkce a jejich vlastnosti. Zvládá znázorňování grafů všech elementárních funkcí a jejich modifikací. Dále chápe pojem limity funkce, derivace, derivace součinu, podílu a složené funkce, geometrický význam derivace, význam derivace pro určování vlastností funkcí. Vše na úrovni látky probírané na střední škole.
- Osnova
- 1. Úprava algebraických výrazů, práce se složenými zlomky a exponenciálními výrazy. 2. Využití základních vzorců při algebraických úpravách. 3. Řešení rovnic a nerovnic, absolutní hodnota, řešení iracionálních rovnic. 4. Řešení kvadratické rovnice. Řešení soustav lineárních rovnic. 5. Řešení exponenciální a logaritmické rovnice, práce s logaritmy. 6. Goniometrické funkce a jejich vlastnosti, goniometrické rovnice. 7. Lineárně lomená funkce, nepřímá úměrnost. 8. Polynomické funkce a jejich vlastnosti. 9. Znázorňování grafů všech elementárních funkcí a jejich modifikací. 10. Pojem limity funkce, jednoduché aplikace. 11. Derivace součinu a podílu funkcí a derivace složené funkce. 12. Derivace funkce a její geometrický význam, tečna funkce. 13. Význam derivace funkce pro určování jejich vlastností.
- Literatura
- povinná literatura
- PETÁKOVÁ, J. Matematika – příprava k maturitě a k přijímacím zkouškám na vysoké školy. Praha: Prometheus, 2006. ISBN 80-7196-099-3.
- doporučená literatura
- KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice matematiky pro ekonomy. Praha: Ekopress, 2007. ISBN 978-80-86929-24-8
- PUCHÝŘOVÁ, J.: Sbírka příkladů z matematiky k příjímacím zkouškám na vysoké školy. Akademické nakladatelství CERM, 2005. ISBN 80-7204-375-7
- Organizační formy výuky
- seminář
- Komplexní výukové metody
- frontální výuka
skupinová výuka - kooperace
skupinová výuka - kolaborace
- Studijní zátěž
Aktivita Počet hodin za semestr Prezenční forma Kombinovaná forma Příprava na seminář, cvičení, tutoriál 20 Příprava na závěrečný test 6 Účast na semináři/cvičeních/tutoriálu/exkurzi 26 Celkem: 52 0 - Metody hodnocení a jejich poměr
- zkouška - ústní 5 %
test - závěrečný 95 %
- Navazující předměty
- Informace učitele
- Povinná docházka 70%. Hodnocení závěrečného testu: N - méně než 25% bodů z celkového počtu bodů za celý test, Z - 25% a více bodů z celkového počtu bodů za celý test. Vyučující má právo v případě nejasných a sporných výpočtů v testu požadovat po studentovi vysvětlení v rámci doplňující ústní zkoušky.
- Statistika zápisu (zima 2012, nejnovější)
- Permalink: https://is.vstecb.cz/predmet/vste/zima2012/ZAM