MAT_1 Matematika I

Vysoká škola technická a ekonomická v Českých Budějovicích
zima 2019
Rozsah
2/2/0. 5 kr. Ukončení: zk.
Vyučující
RNDr. Jaroslav Krieg (cvičící)
RNDr. Dana Smetanová, Ph.D. (cvičící)
Mgr. František Šíma, Ph.D. (cvičící)
RNDr. Jana Vysoká, Ph.D. (cvičící)
Garance
RNDr. Dana Smetanová, Ph.D.
Katedra informatiky a přírodních věd – Ústav technicko-technologický – Rektor – Vysoká škola technická a ekonomická v Českých Budějovicích
Dodavatelské pracoviště: Katedra informatiky a přírodních věd – Ústav technicko-technologický – Rektor – Vysoká škola technická a ekonomická v Českých Budějovicích
Rozvrh seminárních/paralelních skupin
MAT_1/P01: Út 8:00–9:30 E1, D. Smetanová
MAT_1/Q5: So 26. 10. 8:00–9:30 E1, 9:40–11:10 E1, Ne 24. 11. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, So 14. 12. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:10 E1, J. Vysoká
MAT_1/S01: Pá 11:25–12:55 D416, J. Krieg
MAT_1/S02: Pá 13:05–14:35 D416, J. Krieg
MAT_1/S03: Út 14:50–16:20 A7, F. Šíma
MAT_1/S04: Út 16:30–18:00 A7, F. Šíma
MAT_1/S05: Čt 8:00–9:30 B5, D. Smetanová
MAT_1/S06: Čt 9:40–11:10 B5, D. Smetanová
MAT_1/S07: Čt 13:05–14:35 B5, D. Smetanová
MAT_1/S08: Čt 14:50–16:20 B5, D. Smetanová
Předpoklady
Student ovládá obsahovou náplň předmětu matematika v rozsahu výuky na střední škole, případně předmětu ZAM.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu opírající se o výstupy z učení
Cílem předmětu je poskytnout studentům základní znalosti z lineární algebry, diferenciálního a integrálního počtu funkce jedné reálné proměnné potřebné při studiu specializovaných předmětů a dále podat výklad a objasnění stěžejních metod a algoritmů.
Výstupy z učení
Po absolvování kurzu student samostatně umí řešit základní úlohy z probírané látky (počítání s vektory, maticemi a determinanty, řešení soustav lineárních rovnic, vlastnosti a grafy elementárních funkcí, výpočet limity a derivace funkce, vyšetření průběhu funkce, výpočet primitivní funkce, neurčitého integrálu, metodou přímou, per-partes, substituční, výpočet určitého integrálu a obsahu rovinného obrazce).
Osnova
  • 1. Vektor, vektorový prostor, rovnost vektorů, počítání s vektory, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru, skalární součin vektorů. 2. Matice, hodnost matice, sčítání a násobení matic, inverzní matice, Frobeniova věta, řešení soustav lineárních rovnic Gaussovou metodou. 3. Determinanty, Cramerovo pravidlo. 4. Funkce jedné reálné proměnné, definiční obor a obor funkčních hodnot, základní funkce algebraické a nealgebraické. 5. Funkce inverzní, funkce sudá a lichá, funkce cyklometrické. 6. Limita funkce 7. Derivace funkce, základní pravidla pro derivování, derivace funkce složené, tečna grafu funkce. 8. L´Hospitalovo pravidlo. Význam 1. a 2. derivace pro průběh funkce (funkce rostoucí, klesající, konvexní, konkávní, lokální extrémy a inflexní body). 9. Primitivní funkce, neurčitý integrál, přímá integrace. 10. Metoda integrace per-partes. 11. Substituční metoda. 12. Určitý integrál. 13. Výpočet obsahu rovinného obrazce.
Literatura
    povinná literatura
  • DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
    doporučená literatura
  • MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • KLŮFA, Jindřich a Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Organizační formy výuky
přednáška
seminář
tutoriál
konzultace
Komplexní výukové metody
frontální výuka
skupinová výuka - kooperace
skupinová výuka - kolaborace
kritické myšlení
výuka podporovaná multimediálními technologiemi
Studijní zátěž
AktivitaPočet hodin za semestr
Prezenční formaKombinovaná forma
Příprava na přednášky26 
Příprava na seminář, cvičení, tutoriál2689
Příprava na závěrečný test2626
Účast na přednáškách26 
Účast na semináři/cvičeních/tutoriálu/exkurzi2615
Celkem:130130
Metody hodnocení a jejich poměr
zkouška - písemná 70 %
aktivita na semináři a průběžné hodnocení 30 %
Podmínky testu
Napsat závěrečný písemný test. Test pro studenty denní formy obsahuje 5 příkladů po 14 bodech (celkem 70 bodů). Za aktivitu a průběžné zkoušení na semináři je možno získat 0 až 30 bodů.

Studenti CCV získají 0-30 bodů do průběžného hodnocení na základě výsledků průběžných testů. Termíny těchto testů budou upřesněny na začátku semestru na prvním tutoriálu.

Studenti kombinovaného studia mají 70% hodnocení z~písemného testu. Test obsahuje 5 příkladů po 14 bodech. Za průběžnou aktivitu je možno získat 0 až 30 bodů.

Celková klasifikace předmětu, tj. body za závěrečný test (70 - 0) + body z~průběžného hodnocení (30 - 0): A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.

Vyučující má právo v~případě nejasných a sporných výpočtů v~testu požadovat po studentovi vysvětlení v~rámci doplňující ústní zkoušky.

Navazující předměty
Informace učitele
https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Účast na výuce ve všech formách řeší samostatná vnitřní norma VŠTE (Evidence docházky studentů na VŠTE). Pro studenty prezenční formy studia je na kontaktní výuce, tj. vše kromě přednášek, povinná 70% účast.
Další komentáře
Předmět je vyučován každý semestr.
Předmět je zařazen také v obdobích léto 2007, zima 2007, léto 2008, zima 2008, léto 2009, zima 2009, léto 2010, zima 2010, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, zima 2013, léto 2014, zima 2014, léto 2015, zima 2015, léto 2016, zima 2016, léto 2017, zima 2017, léto 2018, zima 2018, léto 2019, zima 2020.