Další formáty:
BibTeX
LaTeX
RIS
@book{30942, author = {Mikeš, Josef and Stepanova, Elena and Vanžurová, Alena and Sándor, Bácso and Berezovski, Vladimir and Chepurna, Elena and Chodorová, Marie and Chudá, Hana and Gavrilchenko, Michail and Haddad, Michael and Hinterleitner, Irena and Jukl, Marek and Juklová, Lenka and Moldobaev, Dzhanybek and Peška, Patrik and Shandra, Igor and Shiha, Mohsen and Smetanová, Dana and Stepanov, Sergej and Sobchuk, Vasilij and Tsyganok, Irina}, address = {Olomouc}, edition = {1. vyd.}, keywords = {differential geometry; topology; manifold; affine connection; metric connection; Riemanian manifold; Kahler manifold; Riemann-Finsler space; transformation; deformation; conformal mapping; geodesic mapping; almost geodesic mapping; F-planar mapping}, howpublished = {tištěná verze "print"}, language = {eng}, location = {Olomouc}, isbn = {978-80-244-4671-4}, note = {EE2.3.30.0041 Název: Podpora vytváření excelentních výzkumných týmů a intersektorální mobility na Univerzitě Palackého v Olomouci II. Poskytovatel: MŠMT}, publisher = {Palacky University, Olomouc}, title = {Differential Geometry of Special Mappings}, year = {2015} }
TY - BOOK ID - 30942 AU - Mikeš, Josef - Stepanova, Elena - Vanžurová, Alena - Sándor, Bácso - Berezovski, Vladimir - Chepurna, Elena - Chodorová, Marie - Chudá, Hana - Gavrilchenko, Michail - Haddad, Michael - Hinterleitner, Irena - Jukl, Marek - Juklová, Lenka - Moldobaev, Dzhanybek - Peška, Patrik - Shandra, Igor - Shiha, Mohsen - Smetanová, Dana - Stepanov, Sergej - Sobchuk, Vasilij - Tsyganok, Irina PY - 2015 TI - Differential Geometry of Special Mappings VL - Monografie PB - Palacky University, Olomouc CY - Olomouc SN - 9788024446714 N1 - EE2.3.30.0041 Název: Podpora vytváření excelentních výzkumných týmů a intersektorální mobility na Univerzitě Palackého v Olomouci II. Poskytovatel: MŠMT KW - differential geometry KW - topology KW - manifold KW - affine connection KW - metric connection KW - Riemanian manifold KW - Kahler manifold KW - Riemann-Finsler space KW - transformation KW - deformation KW - conformal mapping KW - geodesic mapping KW - almost geodesic mapping KW - F-planar mapping N2 - The monograph deals with the theory of conformal, geodesic, holomorphically projective, F-planar and others mappings and transformations of manifolds with affine connection, Riemannian, Kahler and Riemann-Finsler manifolds. Concretely, the monograph treats the following: basic concepts of topological spaces, the theory of manifolds with affine connection (particularly, the problem of semigeodesic coordinates), Riemannian and Kahler manifolds (reconstruction of a metric, equidistant spaces, variational problems in Riemannian spaces, SO(3)-structure as a model of statistical manifolds, decomposition of tensors), the theory of differentiable mappings and transformations of manifolds (the problem of metrization of affine connection, harmonic diffeomorphisms), conformal mappings and transformations (especially conformal mappings onto Einstein spaces, conformal transformations of Riemannian manifolds), geodesic mappings (GM; especially geodesic equivalence of a manifold with affine connection to an equiaffine manifold), GM onto Riemannian manifolds, GM between Riemannian manifolds (GM of equidistant spaces, GM of Vn(B) spaces, its field of symmetric linear endomorphisms), GM of special spaces, particularly Einstein, Kahler, pseudosymmetric manifolds and their generalizations, global geodesic mappings and deformations, GM between Riemannian manifolds of different dimensions, global GM, geodesic deformations of hypersurfaces in Riemannian spaces, some applications of GM to general relativity, namely three invariant classes of the Einstein equations and geodesic mappings, F-planar mappings of spaces with affine connection, holomorphically projective mappings (HPM) of Kahler manifolds (fundamental equations of HPM, HPM of special Kahler manifolds, HPM of parabolic Kahler manifolds, almost geodesic mappings, which generalize geodesic mappings, Riemann-Finsler spaces and their geodesic mappings, geodesic mappings of Berwald spaces onto Riemannian spaces. ER -
MIKEŠ, Josef, Elena STEPANOVA, Alena VANŽUROVÁ, Bácso SÁNDOR, Vladimir BEREZOVSKI, Elena CHEPURNA, Marie CHODOROVÁ, Hana CHUDÁ, Michail GAVRILCHENKO, Michael HADDAD, Irena HINTERLEITNER, Marek JUKL, Lenka JUKLOVÁ, Dzhanybek MOLDOBAEV, Patrik PEŠKA, Igor SHANDRA, Mohsen SHIHA, Dana SMETANOVÁ, Sergej STEPANOV, Vasilij SOBCHUK a Irina TSYGANOK. \textit{Differential Geometry of Special Mappings}. 1. vyd. Olomouc: Palacky University, Olomouc, 2015. 566 s. Monografie. ISBN~978-80-244-4671-4.
|