VŠTE:MAT_1 Mathematics I - Course Information
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2014
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Chládek, Ph.D. (lecturer)
doc. RNDr. Jaroslav Stuchlý, CSc. (lecturer)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/A1: Sat 8. 3. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sat 5. 4. 14:50–16:20 E1, 16:30–18:00 E1, 18:10–18:55 E1, Sat 26. 4. 8:00–9:30 E1, 9:40–11:10 E1, D. Smetanová
MAT_1/P01: Fri 8:00–9:30 E1, J. Krieg
MAT_1/P02: Wed 8:00–9:30 E1, J. Krieg
MAT_1/S01: Fri 9:40–11:10 B5, M. Vacka
MAT_1/S02: Fri 9:40–11:10 B4, J. Krieg
MAT_1/S03: Thu 11:25–12:55 D515, J. Vysoká
MAT_1/S04: Thu 14:50–16:20 D515, M. Vacka
MAT_1/S05: Thu 16:30–18:00 D515, P. Chládek
MAT_1/S06: Thu 18:10–19:40 D515, P. Chládek
MAT_1/S07: Thu 9:40–11:10 D415, J. Krieg
MAT_1/S08: Fri 11:25–12:55 B5, J. Vysoká
MAT_1/S09: Fri 13:05–14:35 B5, J. Krieg
MAT_1/S10: Fri 14:50–16:20 B5, J. Krieg
MAT_1/S11: Fri 11:25–12:55 B4, D. Smetanová
MAT_1/S12: Fri 13:05–14:35 B4, D. Smetanová
MAT_1/S13: Fri 14:50–16:20 B4, D. Smetanová
MAT_1/S14: Mon 14:50–16:20 D415, P. Chládek
MAT_1/S15: Mon 13:05–14:35 B2, P. Chládek
MAT_1/S16: Wed 9:40–11:10 B4, M. Vacka - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
- Enrolment Statistics (summer 2014, recent)
- Permalink: https://is.vstecb.cz/course/vste/summer2014/MAT_1