VŠTE:MAT_1 Mathematics I - Course Information
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2013
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/CCV: Sat 16. 3. Sat 15:15–16:45 A4, Sat 16:50–18:20 A4, Sat 18:25–19:55 A4, Sun 14. 4. Sun 8:00–9:30 A4, Sun 9:40–11:10 A4, Sun 28. 4. Sun 16:00–16:45 A4, Sun 16:50–18:20 A4, Sun 18:25–19:55 A4, Sat 11. 5. Sat 14:45–16:15 A4, Sat 16:20–17:50 A4, Sat 17:55–19:25 A4, Sun 26. 5. Sun 13:10–14:40 A4, Sun 14:45–16:15 A4, Sun 16:20–17:05 A4, M. Vacka
MAT_1/E1: Sat 16. 3. 15:15–16:45 E1, 16:50–18:20 E1, 18:25–19:55 E1, Sun 14. 4. 8:00–9:30 E1, 9:40–11:10 E1, Sun 28. 4. 16:01–16:45 E1, 16:50–18:20 E1, 18:25–19:55 E1, J. Krieg
MAT_1/P01: Wed 13:10–14:40 E1, J. Krieg
MAT_1/P02: Tue 14:45–16:15 E1, J. Krieg
MAT_1/S01: Tue 9:55–11:25 A7, J. Vysoká
MAT_1/S02: Mon 9:55–11:25 D415, J. Krieg
MAT_1/S03: Thu 9:55–11:25 A2, J. Krieg
MAT_1/S04: Mon 11:35–13:05 A5, R. Vejmelka
MAT_1/S05: Wed 11:35–13:05 A2, J. Vysoká
MAT_1/S06: Fri 13:10–14:40 D616, J. Krieg
MAT_1/S07: Mon 14:45–16:15 A6, J. Vysoká
MAT_1/S08: Thu 14:45–16:15 D616, M. Vacka
MAT_1/S09: Wed 14:45–16:15 D616, J. Vysoká
MAT_1/S10: Fri 14:45–16:15 D616, J. Krieg
MAT_1/S11: Mon 16:20–17:50 A7, J. Vysoká
MAT_1/S12: Tue 17:55–19:25 D415, J. Krieg
MAT_1/S13: Wed 14:45–16:15 B2, J. Krieg
MAT_1/S14: Thu 11:35–13:05 A2, M. Vacka
MAT_1/S15: Fri 13:10–14:40 B5, M. Vacka - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 % - Exam conditions
- Exam-written: max. 120 points. Grading scale: F – less than 30 p., X – (30 - 59) p., E – (60 - 68) p., D – (69 - 76) p., C – (77 - 85) p., B – (86 - 94) p., A – 95 and more p..
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
- Enrolment Statistics (summer 2013, recent)
- Permalink: https://is.vstecb.cz/course/vste/summer2013/MAT_1