TEM Termomechanika

Institute of Technology and Business in České Budějovice
winter 2014
Extent and Intensity
2/2. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. Ing. Jiří Míka, CSc. (seminar tutor)
Guaranteed by
doc. Ing. Jiří Míka, CSc.
The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
TEM/P01: Tue 11:25–12:55 A3, J. Míka
TEM/S01: Wed 8:00–9:30 A3, J. Míka
Prerequisites (in Czech)
FORMA ( P )
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 20 student(s).
Current registration and enrolment status: enrolled: 0/20, only registered: 0/20
Course objectives supported by learning outcomes
The filling of the subject builds on the subject of Physics and is the basis for many technical disciplines. Students will deepen their knowledge of Thermodynamics of gases, heat, and learn the basics of combustion. These findings are a sine qua non for the understanding of the nature of economic production, transformation and distribution of thermal energy. Allows you to correct management of technological processes and is essential for a number of normal thermal technical calculations.
Syllabus
  • 1. Basic concepts. Microscopic and macroscopic view. Thermodynamic system, state, action; the status exchanges. Reversible and irreversible state changes. The quantity of the substance. The internal energy. The state values, the heat, the work. Empirical temperature. The zero and the first law of thermodynamics 2. Calorie equation of State and thermal. The different models: an ideal gas, the gas temperature. Unideal gases, solids, liquids, and models. Radiation 3. Material quantity dependent on temperature, expansivity, degree of expansion, compressibility. Heat and temperature parameters. Calorimetrs 4. A simple system. Isotermal, izobaric, izochoric, adiabatic and polytropic process, p-V diagram 5. Thermodynamic machines: engine, refrigerator, heat pump. Second law of thermodynamics, Thomson’s and Carnot’s formulations, the relationships between them. The Wording Of Carathéodory’s 6. Carnot cycle, the efficiency of heat engines, entropy, thermodynamic temperature. The third law of thermodynamic. 7. The thermodynamic potentials: internal vacancies and the Gibbs energy, enthalpy. Their properties and applicability for a particular job 8. Real gases, the properties of liquids and vapours, tables, and charts properties 9. Phase vs. folder. Phase transitions, phase diagram. Claus and Claus-Clapeyron’s equation. The mixture of gas and filling of steam; -thermodynamic properties of moist air, Mollie’s diagram, h-s diagram processes with damp air 10. Heat conduction (conductor): Fourier's law; heat conduction compound wall; leadership with internal heat source 11. The flow of heat (convection) forced and natural (free), principles of dynamic similarity 12. Radiation (radiation): black body radiation law, the application in practice 13. Heat exchangers. Introduction to the modelling of thermal phenomena industrial practice 14. Fuel and combustion, combustion statics
Literature
    required literature
  • NOŽIČKA J. Mechanika a termodynamika pro ekonomiku. Praha : ČVUT, 1990. ISBN 80-01-00417-1
  • OBDRŽÁLEK J. VANĚK A.: Řešené příklady z termodynamiky a molekulové fyziky. Praha : ÚJEP, 1998.
  • OBDRŽÁLEK J. VANĚK A. Termodynamika a molekulová fyzika. 2. vyd. Praha : ÚJEP, 2000. 240 s
  • OBDRŽÁLEK J.: Fyzikální veličiny a jednotky SI, 2. díl. Úvaly : Albra, 2006
    recommended literature
  • HALLIDAY D., RESNICK R. WALKER J. Fyzika, díl 1 a 2. (Fundamentals of Physics, čes. překlad, editoři DUB P.
  • OBDRŽÁLEK J.). 2. dotisk, VÚTIUM a Prometheus, 2006. (HRW
  • NOŽIČKA, J., ADAMEC, J., VARADIOVÁ, B. Termomechanika – sbírka příkladů. 1. vyd. Praha : ČVUT, Strojní fakulta, 1999. 140 s. ISBN 80-01-02050-9.
  • KALČÍK, J., SÝKORA, K. Technická termomechanika. 1.vyd. Praha : Academia, 1973. 536 s.
  • SAZIMA, M. a kol. Teplo. 1.vyd. Praha : SNTL, 1989. 588 s. ISBN 80-03-00043-2
Forms of Teaching
Lecture
Exercise
Teaching Methods
Frontal Teaching
Group Teaching - Competition
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures28 
Preparation for Seminars, Exercises, Tutorial10 
Test 5 times in the course of the semester calculation of short example.10 
Attendance on Lectures28 
Attendance on Seminars/Exercises/Tutorial/Excursion28 
Total:1040
Assessment Methods and Assesment Rate
Exam – written 70 %
aktivita a úkoly na cvičení (in Czech) 30 %
Exam conditions
Celková klasifikace předmětu, tj. body za test (70 - 0) + body z~průběžného hodnocení (30 - 0): A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
The course is also listed under the following terms summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, summer 2015, winter 2015, Summer 2016, summer 2017, summer 2018, summer 2019, summer 2020, summer 2021, summer 2022, winter 2022, SUMMER 2023, summer 2024.
  • Enrolment Statistics (winter 2014, recent)
  • Permalink: https://is.vstecb.cz/course/vste/winter2014/TEM