VŠTE:TEM Thermomechanics - Course Information
TEM pohony
Institute of Technology and Business in České Budějovicesummer 2020
- Extent and Intensity
- 2/2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Ing. Jan Kolínský, Ph.D. (seminar tutor)
- Guaranteed by
- Ing. Jan Kolínský, Ph.D.
The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- TEM/P01: Thu 11:25–12:55 A2, J. Kolínský
TEM/S01: Fri 9:40–11:10 H13, J. Kolínský
TEM/S02: Fri 11:25–12:55 H13, J. Kolínský - Prerequisites (in Czech)
- FORMA(P)
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The filling of the subject builds on the subject of Physics and is the basis for many technical disciplines. Students will deepen their knowledge of Thermodynamics of gases, heat, and learn the basics of combustion. These findings are a sine qua non for the understanding of the nature of economic production, transformation and distribution of thermal energy. Allows you to correct management of technological processes and is essential for a number of normal thermal technical calculations.
- Learning outcomes
- Student is able to apply knowledge from the subject of thermodynamics in solving problems in heat cycles and heat transfer.
- Syllabus
- 1. Basic concepts. Microscopic and macroscopic view. Thermodynamic system, state, action; the status exchanges. Reversible and irreversible state changes. The quantity of the substance. The internal energy. The state values, the heat, the work. Empirical temperature. The zero and the first law of thermodynamics 2. Calorie equation of State and thermal. The different models: an ideal gas, the gas temperature. Unideal gases, solids, liquids, and models. Radiation 3. Material quantity dependent on temperature, expansivity, degree of expansion, compressibility. Heat and temperature parameters. Calorimetrs 4. A simple system. Isotermal, izobaric, izochoric, adiabatic and polytropic process, p-V diagram 5. Thermodynamic machines: engine, refrigerator, heat pump. Second law of thermodynamics, Thomson’s and Carnot’s formulations, the relationships between them. The Wording Of Carathéodory’s 6. Carnot cycle, the efficiency of heat engines, entropy, thermodynamic temperature. The third law of thermodynamic. 7. The thermodynamic potentials: internal vacancies and the Gibbs energy, enthalpy. Their properties and applicability for a particular job 8. Real gases, the properties of liquids and vapours, tables, and charts properties 9. Phase vs. folder. Phase transitions, phase diagram. Claus and Claus-Clapeyron’s equation. The mixture of gas and filling of steam; -thermodynamic properties of moist air, Mollie’s diagram, h-s diagram processes with damp air 10. Heat conduction (conductor): Fourier's law; heat conduction compound wall; leadership with internal heat source 11. The flow of heat (convection) forced and natural (free), principles of dynamic similarity 12. Radiation (radiation): black body radiation law, the application in practice 13. Heat exchangers. Introduction to the modelling of thermal phenomena industrial practice 14. Fuel and combustion, combustion statics
- Literature
- required literature
- NOŽIČKA J. Mechanika a termodynamika pro ekonomiku. Praha : ČVUT, 1990. ISBN 80-01-00417-1
- OBDRŽÁLEK J. VANĚK A.: Řešené příklady z termodynamiky a molekulové fyziky. Praha : ÚJEP, 1998.
- OBDRŽÁLEK J. VANĚK A. Termodynamika a molekulová fyzika. 2. vyd. Praha : ÚJEP, 2000. 240 s
- OBDRŽÁLEK J.: Fyzikální veličiny a jednotky SI, 2. díl. Úvaly : Albra, 2006
- 1. Moran, M.J.; Shapiro, H.N. Fundamental of Engineering Thermodynamics. 2.vyd. New York : John Wiey & Sons, Inc., 1992. ISBN 0471076813.
- recommended literature
- HALLIDAY D., RESNICK R. WALKER J. Fyzika, díl 1 a 2. (Fundamentals of Physics, čes. překlad, editoři DUB P.
- OBDRŽÁLEK J.). 2. dotisk, VÚTIUM a Prometheus, 2006. (HRW
- NOŽIČKA, J., ADAMEC, J., VARADIOVÁ, B. Termomechanika – sbírka příkladů. 1. vyd. Praha : ČVUT, Strojní fakulta, 1999. 140 s. ISBN 80-01-02050-9.
- KALČÍK, J., SÝKORA, K. Technická termomechanika. 1.vyd. Praha : Academia, 1973. 536 s.
- SAZIMA, M. a kol. Teplo. 1.vyd. Praha : SNTL, 1989. 588 s. ISBN 80-03-00043-2
- Forms of Teaching
- Lecture
Exercise
Laboratory Exercise - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 13 Test 5 times in the course of the semester calculation of short example. 13 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 Total: 104 0 - Assessment Methods and Assesment Rate
- Exam – written 70 %
aktivita a úkoly na cvičení (in Czech) 30 % - Exam conditions
- Celková klasifikace předmětu, tj. body za test (70 - 0) + body z~průběžného hodnocení (30 - 0): A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Teacher's information
- Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
- Enrolment Statistics (summer 2020, recent)
- Permalink: https://is.vstecb.cz/course/vste/summer2020/TEM