D 2016

The Influence of Input Factors of Aluminium Anodizing Process on Resulting Thickness and Quality of Aluminium Oxide Layer

VAGASKÁ, Alena, Erika FECHOVÁ, Peter MICHAL and Miroslav GOMBÁR

Basic information

Original name

The Influence of Input Factors of Aluminium Anodizing Process on Resulting Thickness and Quality of Aluminium Oxide Layer

Name in Czech

Vliv vstupních faktorů Hliníkového eloxového procesu na výslednou tloušťku a kvalitu Hliníkové vrstvy oxidu

Authors

VAGASKÁ, Alena (703 Slovakia), Erika FECHOVÁ (703 Slovakia), Peter MICHAL (703 Slovakia) and Miroslav GOMBÁR (703 Slovakia, belonging to the institution)

Edition

Slovensko, International Conference on Manufacturing Engineering and Materials, ICMEM, p. 512-519, 8 pp. 2016

Publisher

Elsevier Ltd.

Other information

Language

English

Type of outcome

Proceedings paper

Field of Study

20301 Mechanical engineering

Country of publisher

Slovakia

Confidentiality degree

is not subject to a state or trade secret

Publication form

electronic version available online

RIV identification code

RIV/75081431:_____/16:00000831

Organization unit

Institute of Technology and Business in České Budějovice

ISSN

Keywords (in Czech)

eloxování; složení elektrolytu; faktory ovlivňují; vrstvu oxidu

Keywords in English

anodizing; composition of slectrolyte; factors influence; oxide layer

Tags

Changed: 18/11/2016 13:13, Hana Dlouhá

Abstract

V originále

In order to optimize the technological process of aluminium anodic oxidation, the possibilities of usage of sodium chloride in the electrolyte has been studied, since very small concentration of sodium chloride allows us to reduce concentration of other components of the electrolyte. Also the influence of sodium chloride concentration in the electrolyte on the final thickness and quality of the formed anodic aluminium oxide (AAO) layer has been investigated in this paper. In contrast to common anodizing experiments, in which the influence of only one separate factor at a time is considered, in our research all relevant factors (four chemical factors) were varied simultaneously according to the methodology of statistical experimental design, i.e. design of experiments (DOE). Based on the evaluation of experimentally obtained data by application of mathematical-statistical methods and theory of neural networks, the relationship between the concentration of sodium chloride in the electrolyte and final thickness of the AAO layer was experimentally determined. Thanks to that it was possible to obtain the predictive model which can determine the final thickness of AAO layer. Moreover, the results of this research allows us to reduce the concentration of other components of the electrolyte up to the level of 25 % of commonly used concentration of these electrolyte components designed for the process of aluminium anodic oxidation.