VARGOVÁ, Michaela, Dana SMETANOVÁ and Eduard BABULAK. VISUALIZATION OF FUNCTIONS OF TWO VARIABLES BY ANAGLYPHS. In L'udovít Balko, Dagmar Szarková, Daniela Richtáriková. APLIMAT 2016 : 15th Conference on Applied Mathematics. Bratislava: Slovak University of Technology in Bratislava, 2016. p. 1078-1083, 6 pp. ISBN 978-80-227-4531-4.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name VISUALIZATION OF FUNCTIONS OF TWO VARIABLES BY ANAGLYPHS
Name in Czech Vizualizace funkcí dvou proměnných pomocí anaglyfů
Authors VARGOVÁ, Michaela (703 Slovakia, belonging to the institution), Dana SMETANOVÁ (203 Czech Republic, belonging to the institution) and Eduard BABULAK (703 Slovakia, belonging to the institution).
Edition Bratislava, APLIMAT 2016 : 15th Conference on Applied Mathematics, p. 1078-1083, 6 pp. 2016.
Publisher Slovak University of Technology in Bratislava
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10101 Pure mathematics
Country of publisher Slovakia
Confidentiality degree is not subject to a state or trade secret
Publication form printed version "print"
RIV identification code RIV/75081431:_____/16:00000658
Organization unit Institute of Technology and Business in České Budějovice
ISBN 978-80-227-4531-4
Keywords (in Czech) vizualizace; anaglyfická projekce; funkce dvou proměnných
Keywords in English visualization; anaglyphic projection; function of two variables
Tags KPV1, MAT_3, RIV16, SCOPUS
Changed by Changed by: Hana Dlouhá, učo 19800. Changed: 1/6/2016 13:16.
Abstract
Paper presents practical examples of utilising anaglyphic projection in support of student’s better comprehension and visualisation of functions of two variables. For comparison purposes, the projection of given surface to a plane (X,Y coordinates) is compared with anaglyphic projection.
Abstract (in Czech)
Příspěvek prezentuje praktické příklady užití anaglyfické projekce pro podporu lepšího pochopení funkcí dvou proměnných. Pro srovnání s anaglyfickou projekcí je také připojen průmět příslušné plochy do roviny.
PrintDisplayed: 30/11/2020 17:33