VŠTE:MAT_2z Mathematics II - Course Information
MAT_2z Mathematics II
Institute of Technology and Business in České Budějovicesummer 2019
- Extent and Intensity
- 2/4/0. 7 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Zdeněk Dušek, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_2z/D7: Sat 16. 2. 8:00–9:30 E1, 8:00–9:30 E1, 9:40–11:10 E1, 9:40–11:10 E1, Sun 17. 3. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, Sun 31. 3. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, Sat 13. 4. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, 14:50–16:20 A7, 14:50–16:20 A7, 16:30–18:00 A7, 16:30–18:00 A7, Sun 12. 5. 13:05–14:35 E1, 13:05–14:35 E1, 14:50–16:20 E1, 14:50–16:20 E1, 16:30–18:00 E1, 16:30–18:00 E1, D. Smetanová
MAT_2z/P01: Mon 9:40–11:10 E1, Z. Dušek
MAT_2z/S01: Tue 13:05–14:35 A7, Wed 13:05–14:35 B4, Z. Dušek
MAT_2z/S02: Mon 13:05–14:35 B5, Wed 9:40–11:10 D616, Z. Dušek
MAT_2z/S03: Tue 13:05–14:35 A6, Wed 13:05–14:35 B5, D. Smetanová - Prerequisites
- MAT_z Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 200 student(s).
Current registration and enrolment status: enrolled: 1/200, only registered: 0/200 - Course objectives supported by learning outcomes
- The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
- Learning outcomes
- After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
- Syllabus
- 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
- Literature
- Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
- Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
- MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009. 339 s. ISBN 978-80-214-3631-2.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009. 298 s. ISBN 978-80-86929-53-8.
- CHARVÁT, Jura, Václav KELAR a Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006. 206 s. ISBN 80-01-03537-9.
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003. 460 s. ISBN 80-7200-587-1.
- Forms of Teaching
- Lecture
Seminar
Excursion - language
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 39 104 Preparation for the Final Test 39 52 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 52 26 Total: 182 182 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during the lectures 30 % - Exam conditions
- Grading of the course: First Test/Seminar Work/Activity … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Teacher's information
- Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
- Enrolment Statistics (summer 2019, recent)
- Permalink: https://is.vstecb.cz/course/vste/summer2019/MAT_2z