MAT_2z Mathematics II

Institute of Technology and Business in České Budějovice
summer 2019
Extent and Intensity
2/4/0. 7 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2z/D7: Sat 16. 2. 8:00–9:30 E1, 8:00–9:30 E1, 9:40–11:10 E1, 9:40–11:10 E1, Sun 17. 3. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, Sun 31. 3. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, Sat 13. 4. 8:00–9:30 A7, 8:00–9:30 A7, 9:40–11:10 A7, 9:40–11:10 A7, 14:50–16:20 A7, 14:50–16:20 A7, 16:30–18:00 A7, 16:30–18:00 A7, Sun 12. 5. 13:05–14:35 E1, 13:05–14:35 E1, 14:50–16:20 E1, 14:50–16:20 E1, 16:30–18:00 E1, 16:30–18:00 E1, D. Smetanová
MAT_2z/P01: Mon 9:40–11:10 E1, Z. Dušek
MAT_2z/S01: Tue 13:05–14:35 A7, Wed 13:05–14:35 B4, Z. Dušek
MAT_2z/S02: Mon 13:05–14:35 B5, Wed 9:40–11:10 D616, Z. Dušek
MAT_2z/S03: Tue 13:05–14:35 A6, Wed 13:05–14:35 B5, D. Smetanová
Prerequisites
MAT_z Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 200 student(s).
Current registration and enrolment status: enrolled: 1/200, only registered: 0/200
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009. 339 s. ISBN 978-80-214-3631-2.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009. 298 s. ISBN 978-80-86929-53-8.
  • CHARVÁT, Jura, Václav KELAR a Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006. 206 s. ISBN 80-01-03537-9.
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003. 460 s. ISBN 80-7200-587-1.
Forms of Teaching
Lecture
Seminar
Excursion - language
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial39104
Preparation for the Final Test3952
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion5226
Total:182182
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/Activity … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Teacher's information
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
The course is also listed under the following terms summer 2017, summer 2018, winter 2019, summer 2020, summer 2021, summer 2022, winter 2022, SUMMER 2023, summer 2024.
  • Enrolment Statistics (summer 2019, recent)
  • Permalink: https://is.vstecb.cz/course/vste/summer2019/MAT_2z