TEM pohony

Institute of Technology and Business in České Budějovice
summer 2024
Extent and Intensity
2/2/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
Ing. Jan Kolínský, Ph.D. (seminar tutor)
Ing. Jan Kouba (seminar tutor)
Guaranteed by
Ing. Jan Kolínský, Ph.D.
The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: The Department of Mechanical Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
TEM/P01: Wed 11:25–12:55 B2, J. Kolínský
TEM/ST2: Sun 7. 4. 8:00–9:30 E7, 9:40–11:10 E7, 11:25–12:55 E7, 14:50–16:20 B5, 16:30–18:00 B5, Sun 19. 5. 13:05–14:35 E5, 14:50–16:20 E5, 16:30–18:00 E5, J. Kolínský
TEM/S01: Thu 16:30–18:00 B3, J. Kouba
TEM/S02: Thu 16:30–18:00 B3, J. Kouba
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The filling of the subject builds on the subject of Physics and is the basis for many technical disciplines. Students will deepen their knowledge of Thermodynamics of gases, heat, and learn the basics of combustion. These findings are a sine qua non for the understanding of the nature of economic production, transformation and distribution of thermal energy. Allows you to correct management of technological processes and is essential for a number of normal thermal technical calculations.
Learning outcomes
Student is able to apply knowledge from the subject of thermodynamics in solving problems in heat cycles and heat transfer.
Syllabus
  • 1. Basic concepts. Microscopic and macroscopic view. Thermodynamic system, state, action; the status exchanges. Reversible and irreversible state changes. The quantity of the substance. The internal energy. The state values, the heat, the work. Empirical temperature. The zero and the first law of thermodynamics
  • 2. Calorie equation of State and thermal. The different models: an ideal gas, the gas temperature. Unideal gases, solids, liquids, and models. Radiation
  • 3. Material quantity dependent on temperature, expansivity, degree of expansion, compressibility. Heat and temperature parameters. Calorimetrs
  • 4. A simple system. Isotermal, izobaric, izochoric, adiabatic and polytropic process, p-V diagram
  • 5. Thermodynamic machines: engine, refrigerator, heat pump. Second law of thermodynamics, Thomson’s and Carnot’s formulations, the relationships between them. The Wording Of Carathéodory’s
  • 6. Carnot cycle, the efficiency of heat engines, entropy, thermodynamic temperature. The third law of thermodynamic.
  • 7. The thermodynamic potentials: internal vacancies and the Gibbs energy, enthalpy. Their properties and applicability for a particular job
  • 8. Real gases, the properties of liquids and vapours, tables, and charts properties
  • 9. Phase vs. folder. Phase transitions, phase diagram. Claus and Claus-Clapeyron’s equation. The mixture of gas and filling of steam; -thermodynamic properties of moist air, Mollie’s diagram, h-s diagram processes with damp air
  • 10. Heat conduction (conductor): Fourier's law; heat conduction compound wall; leadership with internal heat source
  • 11. The flow of heat (convection) forced and natural (free), principles of dynamic similarity
  • 12. Radiation (radiation): black body radiation law, the application in practice
  • 13. Heat exchangers. Introduction to the modelling of thermal phenomena industrial practice
  • 14. Fuel and combustion, combustion statics
Literature
  • NOŽIČKA, J., ADAMEC, J., VARADIOVÁ, B. Termomechanika – sbírka příkladů. 1. vyd. Praha : ČVUT, Strojní fakulta, 1999. 140 s. ISBN 80-01-02050-9.
  • OBDRŽÁLEK J.: Fyzikální veličiny a jednotky SI, 2. díl. Úvaly : Albra, 2006
  • OBDRŽÁLEK J. VANĚK A.: Řešené příklady z termodynamiky a molekulové fyziky. Praha : ÚJEP, 1998.
  • SAZIMA, M. a kol. Teplo. 1.vyd. Praha : SNTL, 1989. 588 s. ISBN 80-03-00043-2
  • NOŽIČKA J. Mechanika a termodynamika pro ekonomiku. Praha : ČVUT, 1990. ISBN 80-01-00417-1
  • 1. Moran, M.J.; Shapiro, H.N. Fundamental of Engineering Thermodynamics. 2.vyd. New York : John Wiey & Sons, Inc., 1992. ISBN 0471076813.
  • OBDRŽÁLEK J. VANĚK A. Termodynamika a molekulová fyzika. 2. vyd. Praha : ÚJEP, 2000. 240 s
  • KALČÍK, J., SÝKORA, K. Technická termomechanika. 1.vyd. Praha : Academia, 1973. 536 s.
Forms of Teaching
Lecture
Seminar
Tutorial
Teaching Methods
Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures13 
Preparation for Seminars, Exercises, Tutorial1030
Preparation for the Final Test1938
Test 3 times in the course of the semester calculation of short example.1010
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2626
Total:104104
Assessment Methods and Assesment Rate
Exam – written 70 %
3 průběžné testy na cvičení + aktivita (in Czech) 30 %
Exam conditions
Celková klasifikace předmětu, tj. body za test (70 - 0) + body z~průběžného hodnocení (30 - 0): A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Teacher's information
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
The course is also listed under the following terms summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, summer 2017, summer 2018, summer 2019, summer 2020, summer 2021, summer 2022, winter 2022, SUMMER 2023.
  • Enrolment Statistics (recent)
  • Permalink: https://is.vstecb.cz/course/vste/summer2024/TEM