VŠTE:NE_AMA Aplikovaná matematika - Informace o předmětu
NE_AMA Aplikovaná matematika
Vysoká škola technická a ekonomická v Českých Budějovicíchzima 2019
- Rozsah
- 2/1/0. 4 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Zdeněk Dušek, Ph.D. (přednášející)
Mgr. Petr Chládek, Ph.D. (cvičící) - Garance
- doc. RNDr. Zdeněk Dušek, Ph.D.
Katedra informatiky a přírodních věd – Ústav technicko-technologický – Rektor – Vysoká škola technická a ekonomická v Českých Budějovicích
Dodavatelské pracoviště: Katedra informatiky a přírodních věd – Ústav technicko-technologický – Rektor – Vysoká škola technická a ekonomická v Českých Budějovicích - Rozvrh seminárních/paralelních skupin
- NE_AMA/F01: St 9:40–11:10 N121, Z. Dušek, P. Chládek
NE_AMA/NE1: So 2. 11. 11:25–12:55 B1, 13:05–14:35 B1, Ne 10. 11. 11:25–12:55 B1, 13:05–14:35 B1, So 7. 12. 11:25–12:55 E1, 13:05–14:35 E1, Z. Dušek, P. Chládek
NE_AMA/S01: každou sudou středu 11:25–12:55 N109, P. Chládek
NE_AMA/S02: každou lichou středu 11:25–12:55 N109, P. Chládek - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu opírající se o výstupy z učení
- Předmět je zaměřen na pokročilé matematické metody používané ve finanční teorii. Cílem je seznámit studenty s posloupnostmi a řadami, principy časové hodnoty peněz a základními principy finančních trhů.
- Výstupy z učení
- Po úspěšném absolvování předmětu student:
- využívá posloupnosti při řešení matematických problémů,
- pracuje s časovými řadami, sčítá a analyzuje jejich konvergenci,
- využívá různé druhy úročení s různou frekvencí,
- stanoví efektivní a reálnou úrokovou sazbu,
- vypočítá současnou a budoucí hodnotu anuity, sestaví umořovací schéma dluhu,
- využívá matematické postupy při hodnocení deterministických toků cash flow,
- ocení dluhopisy, akcie a pracuje s měnovými kurzy,
- provádí analýzu citlivosti cen dluhopisů na změnu úrokové míry (durace, konvexita),
- analyzuje výnos a riziko portfolia. - Osnova
- Přednášky
- 1. Základní pojmy z finanční matematiky, posloupnosti a řady, součet řady.
- 2. Úročení. Typy úročení. Jednoduché úročení, polhůtní, základní rovnice. Diskont.
- 3. Složené úročení, základní rovnice. Smíšené úročení. Výpočet úrokové sazby a úroku.
- 4. Spoření krátkodobé a dlouhodobé.
- 5. Důchody jako pravidelné platby z investice, splácení úvěru s konstantní anuitou, úmor.
- 6. Směnky a směnečné obchody. Skonto. Běžné účty. Hypoteční úvěry. Spotřebitelské úvěry. Forfaiting, faktoring a leasing.
- 7. Dluhopisy, durace, konvexita, imunizace.
- 8. Akcie, devizové obchody, finanční a termínové obchody, výkonnosti portfolia, dvousložkové a vícesložkové portfolio.
- 9. Měnové kurzy.
- 10. Úvod do analýzy časových řad, klouzavý průměr, diference a index růstu.
- 11. Modelování časových řad, složky časových řad.
- 12. Trendová složka, modely trendových složek.
- 13. Využití časových řad k prognózování. Semináře
- 1. Základní pojmy z finanční matematiky, posloupnosti a řady.
- 2. Jednoduché úročení, polhůtní, základní rovnice, diskont.
- 3. Složené úročení, smíšené úročení, úroková sazba, úrok.
- 4. Spoření krátkodobé a dlouhodobé, využití součtu řady.
- 5. Důchody, úvěr, splácení úvěru, úmor.
- 6. Směnky a směnečné obchody, hypoteční a spotřebitelské úvěry.
- 7. Oceňování dluhopisů.
- 8. Akcie, devizové obchody, finanční a termínové obchody, výkonnosti portfolia, vícesložkové portfolio.
- 9. Měnové kurzy.
- 10. Úvod do analýzy časových řad, složky časových řad.
- 11. Modelování časových řad.
- 12. Trendová složka, modely trendových složek.
- 13. Využití časových řad k prognózování.
- Literatura
- povinná literatura
- ŠOBA, O., M. ŠIRŮČEK a R. PTÁČEK, 2013. Finanční matematika v praxi. Praha: Grada. ISBN 978-80-247-4636-4.
- PROUZA, L., 2007. Finanční a pojistná matematika. Praha: Vysoká škola ekonomie a managementu. ISBN 978-80-86730-17-2.
- doporučená literatura
- ARLT, J., M. ARLTOVÁ a E. RULÍKOVÁ, 2004. Analýza ekonomických časových řad s příklady, 2. vyd. Praha: Vysoká škola ekonomická, Oeconomica. ISBN 80-245-0777-3.
- JÍLEK, J., 2013. Finance v globální ekonomice II – Měnová a kurzová politika. Praha: Grada. ISBN 978-80-247-8822-7
- ŠOBA O., M. ŠIRŮČEK a R. PTÁČEK, 2017. Finanční matematika v praxi. 2. vyd. Praha: Grada. ISBN 978-80-271-0250-1.
- EPPING, R. CH., 2004. Průvodce globální ekonomikou. Praha: Portál. ISBN 978-80-7178-825-6.
- CIPRA, T., 2008. Finanční ekonometrie. Praha: Ekopress. ISBN 978-80- 86929-43-9.
- DOŠLÁ, Z. a P. LIŠKA, 2014. Matematika pro nematematické obory. Praha: Grada. ISBN 978-80-247-5322-5.
- RADOVÁ, J., P. DVOŘÁK a J. MÁLEK, 2013. Finanční matematika pro každého. 8., rozš. vyd. Praha: Grada. ISBN 978-80-247-4831-3.
- RADOVÁ, J., J. MÁLEK, P. JABLONSKÝ a M. RADA, 2011. Finanční matematika pro každého – příklady + CD-ROM. Praha: Grada. ISBN 978- 80-247-3584-9.
- ARLT, J. a M. ARTLOVÁ, 2009. Ekonomické časové řady. Praha: Professional Publishing. ISBN 978-80-86946-85-6.
- CIPRA. T., 2006. Pojistná matematika: teorie a praxe. Praha: Ekopress. ISBN 80-86929-11-6.
- Organizační formy výuky
- přednáška
seminář - Komplexní výukové metody
- frontální výuka
skupinová výuka - kooperace
kritické myšlení
samostatná práce – individuální nebo individualizovaná činnost
- Studijní zátěž
Aktivita Počet hodin za semestr Prezenční forma Kombinovaná forma Příprava na průběžný test 5 Příprava na přednášky 15 Příprava na seminář, cvičení, tutoriál 15 60 Příprava na závěrečný test 26 18 Účast na přednáškách 26 Účast na semináři/cvičeních/tutoriálu/exkurzi 13 12 Účast na testech (průběžném a závěrečném) 4 14 Celkem: 104 104 - Metody hodnocení a jejich poměr
- test - závěrečný 70 %
2 průběžné testy (2x 15 bodů) 30 % - Podmínky testu
- Pro úspěšné splnění předmětu je nutné v~součtu dosáhnout z~průběžného a závěrečného hodnocení minimálně 70 % za níže stanovených podmínek. V~průběžném hodnocení lze získat 30 bodů tj. 30 %. V~závěrečném hodnocení lze celkem získat 70 bodů tj. 70 %. Celková klasifikace předmětu, tj. body za závěrečné hodnocení (70 - 0) + body z~průběžného hodnocení (30 - 0):
A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 – 0. Student prezenční formy studia je povinen na kontaktní výuce, tj. vše kromě přednášek, splnit povinnou 70% účast. Pokud účast nebude splněná, bude student automaticky klasifikován „F“.
Průběžné hodnocení: 2 průběžné testy (2x 15 bodů) – 30 bodů
Závěrečné hodnocení: Závěrečný test – 70 bodů (tj. 70 %)
Studenti kombinované formy studia absolvují 100 bodový závěrečný test, v~případě potřeby může vyučující kromě testu provést ústní dozkoušení. Ústní dozkoušení se bude v~případě potřeby týkat také prezenční formy studia.
- Informace učitele
- Účast na výuce ve všech formách řeší samostatná vnitřní norma VŠTE (Evidence docházky studentů na VŠTE). Pro studenty prezenční formy studia je na kontaktní výuce, tj. vše kromě přednášek, povinná 70% účast.
- Další komentáře
- Předmět je vyučován každoročně.
- Statistika zápisu (zima 2019, nejnovější)
- Permalink: https://is.vstecb.cz/predmet/vste/zima2019/NE_AMA