NE_AMA Applied Mathematics

Institute of Technology and Business in České Budějovice
summer 2020
Extent and Intensity
2/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Guaranteed by
Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
NE_AMA/CCV: Sat 21. 3. 13:05–16:20 D416, Sat 4. 4. 9:40–12:55 D416, Sat 18. 4. 9:40–12:55 D416, P. Chládek, D. Smetanová
Prerequisites (in Czech)
OBOR(CAP)
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The course focuses on advanced mathematical methods used in financial theory. The aim is to become familiar with the sequences and series, principles of time value of money, and basic principles of financial markets.
Learning outcomes
After successful completion of the course, students are able to:
- use sequences in solving mathematical problems,
- work with time series, add and analyse their convergence,
- use various types of interests with different frequencies,
- set effective and real interest rate,
- calculate the current and future value of annuity, prepare a plan of debt redemption,
- use mathematical procedures in evaluating determinist cash flow,
- value bonds, stocks, and work with exchange rates,
- carry out a sensitivity analysis of bond prices to interest rate change (duration, convexity),
- analyse revenue and portfolio risk.
Syllabus
  • Lectures
  • 1. Basic terms of financial mathematics, sequences and series, summation of series.
  • 2. Interest. Types of interest. Simple interest method, decursive interest, basic equations. Discount.
  • 3. Compound interest, basic equations. Combined interest. Calculation of interest rate and interest.
  • 4. Short-term and long-term savings.
  • 5. Pensions as regular payments from the investment, repayment of load with a constant annuity, amortization.
  • 6. Note payables and note payables trade. Discount. Checking accounts. Mortgage loans. Consumer credit. Forfaiting, factoring and leasing.
  • 7. Bonds, duration, convexity, immunization.
  • 8. Shares, foreign exchange trading, financial trade and futures, portfolio performance, two- and multi-component portfolio.
  • 9. Exchange rates.
  • 10. Introduction to time series analysis, rolling average, difference and growth index.
  • 11. Modelling of time series, time series components.
  • 12. Trend component, models of trend components.
  • 13. Application of time series for forecasting.

    Seminars
  • 1. Basic terms of financial mathematics, sequences and series.
  • 2. Simple interest method, decursive interest, basic equations, discount.
  • 3. Compound interest, combined interest, interest rate, interest.
  • 4. Short-term and long-term savings, using summation of series.
  • 5. Pensions, loan, loan repayment, amortisation.
  • 6. Note payables and note payables trading, mortgage loans, consumer credit.
  • 7. Valuation of bonds.
  • 8. Shares, foreign exchange trading, financial trade and futures, portfolio performance, multi-component portfolio.
  • 9. Exchange rates.
  • 10. Introduction to time series analysis, time series components.
  • 11. Modelling of time series.
  • 12. Trend component, models of trend components.
  • 13. Using time series for forecasting.
Literature
    required literature
  • PROUZA, L., 2007. Finanční a pojistná matematika. Praha: Vysoká škola ekonomie a managementu. ISBN 978-80-86730-17-2.
  • ŠOBA, O., M. ŠIRŮČEK a R. PTÁČEK, 2013. Finanční matematika v praxi. Praha: Grada. ISBN 978-80-247-4636-4.
    recommended literature
  • RADOVÁ, J., P. DVOŘÁK a J. MÁLEK, 2013. Finanční matematika pro každého. 8., rozš. vyd. Praha: Grada. ISBN 978-80-247-4831-3.
  • ARLT, J. a M. ARTLOVÁ, 2009. Ekonomické časové řady. Praha: Professional Publishing. ISBN 978-80-86946-85-6.
  • RADOVÁ, J., J. MÁLEK, P. JABLONSKÝ a M. RADA, 2011. Finanční matematika pro každého – příklady + CD-ROM. Praha: Grada. ISBN 978- 80-247-3584-9.
  • EPPING, R. CH., 2004. Průvodce globální ekonomikou. Praha: Portál. ISBN 978-80-7178-825-6.
  • ŠOBA O., M. ŠIRŮČEK a R. PTÁČEK, 2017. Finanční matematika v praxi. 2. vyd. Praha: Grada. ISBN 978-80-271-0250-1.
  • CIPRA, T., 2008. Finanční ekonometrie. Praha: Ekopress. ISBN 978-80- 86929-43-9.
  • CIPRA. T., 2006. Pojistná matematika: teorie a praxe. Praha: Ekopress. ISBN 80-86929-11-6.
  • ARLT, J., M. ARLTOVÁ a E. RULÍKOVÁ, 2004. Analýza ekonomických časových řad s příklady, 2. vyd. Praha: Vysoká škola ekonomická, Oeconomica. ISBN 80-245-0777-3.
  • DOŠLÁ, Z. a P. LIŠKA, 2014. Matematika pro nematematické obory. Praha: Grada. ISBN 978-80-247-5322-5.
  • JÍLEK, J., 2013. Finance v globální ekonomice II – Měnová a kurzová politika. Praha: Grada. ISBN 978-80-247-8822-7
Forms of Teaching
Lecture
Seminar
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Critical Thinking
Individual Work– Individual or Individualized Activity
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for the Mid-term Test5 
Preparation for Lectures15 
Preparation for Seminars, Exercises, Tutorial1560
Preparation for the Final Test2618
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion1312
Test – mid-term, test final414
Total:104104
Assessment Methods and Assesment Rate
Test – final 100 %
Exam conditions
Grading for the course, i.e. points for the final test (70 - 0) + points for the course test (30 - 0): A 100 – 90, B 89.99 – 84, C 83.99 – 77, D 76.99 – 73, E 72.99 – 70, FX 69.99 – 30, F 29.99 – 0. Students in the full-time form of study are obliged to participate in 70 % of the lessons (except for lectures). If this condition is not fulfilled, the student will automatically get “F” grade.

Final test: Final test – 100 points

Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
Teacher's information
Attendance in the course is defined in a separate VSTE internal standard (Evidence of student attendance at VSTE) for all forms of study. Students in full-time form of study are obliged to attend at least 70 % of the lessons (except for the lectures).
The course is also listed under the following terms winter 2019, winter 2020, winter 2021, winter 2022, winter 2023, winter 2024.
  • Enrolment Statistics (summer 2020, recent)
  • Permalink: https://is.vstecb.cz/course/vste/summer2020/NE_AMA