MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2020
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/SX01: Wed 14:50–16:20 D416, D. Smetanová
MAT_1/SX02: Fri 9:40–11:10 D416, D. Smetanová
MAT_1/SX03: Fri 9:40–11:10 D416, D. Smetanová - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 Preparation for Lectures 13 Preparation for Seminars, Exercises, Tutorial 13 67 Preparation for the Final Test 20 26 Semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Presentation 2 2 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Full-time form - test max 70 points (+ max 30 points continuous assessment), combined form - test 100 points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
General note: Exitus. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2019
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/P01: Tue 8:00–9:30 E1, D. Smetanová
MAT_1/Q5: Sat 26. 10. 8:00–9:30 E1, 9:40–11:10 E1, Sun 24. 11. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sat 14. 12. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:10 E1, J. Vysoká
MAT_1/S01: Fri 11:25–12:55 D416, J. Krieg
MAT_1/S02: Fri 13:05–14:35 D416, J. Krieg
MAT_1/S03: Tue 14:50–16:20 A7, F. Šíma
MAT_1/S04: Tue 16:30–18:00 A7, F. Šíma
MAT_1/S05: Thu 8:00–9:30 B5, D. Smetanová
MAT_1/S06: Thu 9:40–11:10 B5, D. Smetanová
MAT_1/S07: Thu 13:05–14:35 B5, D. Smetanová
MAT_1/S08: Thu 14:50–16:20 B5, D. Smetanová - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 89 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2019
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (lecturer)
- Guaranteed by
- Ing. Jaroslav Staněk, DiS.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/CCV1: Sun 24. 3. 8:45–12:55 D416, Sun 12. 5. 8:00–9:30 D416, D. Smetanová
MAT_1/CCV2: Fri 5. 4. 9:40–12:55 A1, Fri 26. 4. 9:40–12:55 A1, D. Smetanová - Prerequisites
- OBOR(CAP)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 89 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2018
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Vladislav Biba, Ph.D. (seminar tutor)
doc. RNDr. Zdeněk Dušek, Ph.D. (seminar tutor)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/P01: Thu 9:40–11:10 E1, D. Smetanová
MAT_1/Q4: Sat 3. 11. 13:50–14:35 B1, 14:50–16:20 B1, 16:30–18:00 B1, Sat 24. 11. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, Sat 8. 12. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, D. Smetanová
MAT_1/S01: Fri 9:40–11:10 D516, D. Smetanová
MAT_1/S02: Fri 11:25–12:55 D516, D. Smetanová
MAT_1/S03: Thu 13:05–14:35 B4, D. Smetanová
MAT_1/S04: Mon 9:40–11:10 B4, P. Chládek
MAT_1/S05: Mon 11:25–12:55 B4, P. Chládek
MAT_1/S06: Wed 9:40–11:10 D516, P. Chládek
MAT_1/S07: Tue 14:50–16:20 B3, F. Šíma
MAT_1/S08: Wed 13:05–14:35 D416, F. Šíma - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 89 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2018
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- Ing. Jaroslav Staněk, DiS.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/CCV1: Fri 6. 4. 8:00–12:10 D516, Fri 20. 4. 8:00–12:10 D516, Fri 4. 5. 8:00–12:10 D516, D. Smetanová
MAT_1/CCV2: Sat 17. 3. 8:00–12:55 D416, Sat 14. 4. 13:05–16:20 D415, D. Smetanová - Prerequisites
- OBOR(CAP)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 1998 student(s).
Current registration and enrolment status: enrolled: 0/1998, only registered: 0/1998 - Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2017
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Vladislav Biba, Ph.D. (seminar tutor)
Ing. Jiří Čejka, Ph.D. (seminar tutor)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
Ing. Květa Papoušková (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/P01: Wed 11:25–12:55 E1, D. Smetanová
MAT_1/Q3: Sat 30. 9. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, Sat 11. 11. 12:10–12:55 B1, 13:05–14:35 B1, 14:50–16:20 B1, 16:30–17:15 B1, Sat 9. 12. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_1/S01: Tue 13:05–14:35 B5, K. Papoušková
MAT_1/S02: Mon 9:40–11:10 B5, P. Chládek
MAT_1/S03: Mon 14:50–16:20 B5, P. Chládek
MAT_1/S04: Thu 9:40–11:10 B3, V. Biba
MAT_1/S05: Wed 14:50–16:20 D416, F. Šíma
MAT_1/S06: Thu 14:50–16:20 A7, V. Biba
MAT_1/S07: Thu 13:05–14:35 A7, K. Papoušková
MAT_1/S08: Thu 14:50–16:20 D416, V. Biba
MAT_1/S10: Mon 14:50–16:20 B4, P. Chládek
MAT_1/TP01: Tue 9:40–11:10 A219, J. Vysoká
MAT_1/TS01: Tue 11:25–12:55 A219, J. Vysoká - Prerequisites
- MAX_KOMBINOVANYCH(999) && MAX_PREZENCNICH(999)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 1998 student(s).
Current registration and enrolment status: enrolled: 0/1998, only registered: 0/1998 - Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2017
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Tomáš Náhlík, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/P01: Thu 13:05–14:35 E1, D. Smetanová
MAT_1/S01: Fri 9:40–11:10 B4, T. Náhlík
MAT_1/S02: Fri 8:00–9:30 B4, T. Náhlík
MAT_1/S03: Fri 11:25–12:55 B4, T. Náhlík - Prerequisites
- FORMA(P)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 120 student(s).
Current registration and enrolment status: enrolled: 0/120, only registered: 0/120 - Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2016
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Vladislav Biba, Ph.D. (seminar tutor)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/P01: Mon 14:50–16:20 E1, M. Vargová
MAT_1/P02: Wed 16:30–18:00 E1, M. Vargová
MAT_1/Q2a: Sat 1. 10. 13:05–14:35 B1, 14:50–16:20 B1, 16:30–18:00 B1, 18:10–19:40 B1, Sun 13. 11. 13:50–14:35 B1, 14:50–16:20 B1, 16:30–18:00 B1, 18:10–19:40 B1, M. Vargová
MAT_1/Q2b: Sat 19. 11. 8:00–9:30 B2, 9:40–11:10 B2, 11:25–12:55 B2, 13:05–14:35 B2, 14:50–15:35 B2, Sat 10. 12. 8:00–9:30 B2, 9:40–11:10 B2, 11:25–12:55 B2, M. Vargová
MAT_1/S01: Tue 14:50–16:20 B5, M. Vargová
MAT_1/S02: Thu 14:50–16:20 E4, J. Vysoká
MAT_1/S03: Tue 11:25–12:55 E7, J. Krieg
MAT_1/S04: Thu 13:05–14:35 D516, J. Krieg
MAT_1/S06: Thu 9:40–11:10 E6, P. Chládek
MAT_1/S08: Mon 11:25–12:55 A6, P. Chládek
MAT_1/S11: Mon 11:25–12:55 E6, D. Smetanová
MAT_1/S12: Wed 13:05–14:35 E6, V. Biba
MAT_1/S13: Tue 8:00–9:30 B5, V. Biba
MAT_1/TP01: Thu 14:50–16:20 A219, M. Vargová
MAT_1/TS01: Thu 13:05–14:35 A219, M. Vargová - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 604 student(s).
Current registration and enrolment status: enrolled: 0/604, only registered: 0/604 - Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- CHLÁDEK, Petr. Matematika I : studijní opora pro kombinované studium. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 2012, 44 pp. ISBN 978-80-7468-004-5. info
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České BudějoviceSummer 2016
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/A3: Sat 5. 3. 13:05–14:35 E1, 14:50–16:20 E1, 16:30–18:00 E1, Sat 2. 4. 14:50–16:20 E1, 16:30–18:00 E1, Sat 14. 5. 12:10–12:55 E1, 13:05–14:35 E1, 14:50–16:20 E1, D. Smetanová
MAT_1/P01: Fri 8:00–9:30 E1, D. Smetanová
MAT_1/S01: Fri 9:40–11:10 E7, D. Smetanová
MAT_1/S02: Thu 8:00–9:30 B2, M. Vargová
MAT_1/S03: Wed 8:00–9:30 A4, J. Vysoká
MAT_1/S04: Wed 11:25–12:55 B1, J. Krieg
MAT_1/S05: Wed 8:00–9:30 A7, M. Vacka
MAT_1/S06: Tue 8:00–9:30 B3, M. Vargová
MAT_1/S07: Tue 8:00–9:30 D415, J. Vysoká
MAT_1/S08: Thu 9:40–11:10 A4, J. Krieg
MAT_1/S09: Tue 9:40–11:10 D515, J. Krieg
MAT_1/S10: Thu 13:05–14:35 B3, F. Šíma
MAT_1/S11: Thu 8:00–9:30 B3, J. Vysoká
MAT_1/S12: Thu 13:05–14:35 B2, J. Krieg
MAT_1/S13: Fri 9:40–11:10 E4, M. Vacka - Prerequisites
- MAX_KOMBINOVANYCH(210) && MAX_PREZENCNICH(325)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 535 student(s).
Current registration and enrolment status: enrolled: 0/535, only registered: 0/535 - Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2015
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/D4_Q1a: Sat 10. 10. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, Sat 21. 11. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:55 B1, Sat 19. 12. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_1/D4_Q1b: Sat 7. 11. 8:00–9:30 B3, 9:40–11:10 B3, 11:25–12:55 B3, 13:05–14:35 B3, Sat 21. 11. 13:05–14:35 A2, 14:50–16:20 A2, 16:30–18:00 A2, 18:10–18:55 A2, D. Smetanová
MAT_1/P01: Tue 9:40–11:10 E1, D. Smetanová
MAT_1/P02: Tue 13:05–14:35 E1, D. Smetanová
MAT_1/S01: Wed 14:50–16:20 D515, J. Krieg
MAT_1/S04: Wed 9:40–11:10 D515, J. Vysoká
MAT_1/S05: Wed 11:25–12:55 D515, J. Krieg
MAT_1/S06: Tue 16:30–18:00 D616, M. Vacka
MAT_1/S07: Thu 9:40–11:10 B4, M. Vacka
MAT_1/S08: Thu 11:25–12:55 A5, M. Vacka
MAT_1/S09: Mon 11:25–12:55 A2, J. Vysoká
MAT_1/S10: Mon 13:05–14:35 A2, J. Vysoká
MAT_1/S11: Mon 14:50–16:20 A6, J. Vysoká
MAT_1/S12: Mon 8:00–9:30 A7, J. Vysoká
MAT_1/S13: Tue 8:00–9:30 A6, J. Vysoká
MAT_1/S14: Tue 9:40–11:10 A6, J. Vysoká
MAT_1/S15: Thu 13:05–14:35 D616, J. Vysoká
MAT_1/TP01: Tue 14:50–16:20 A219, M. Vargová
MAT_1/TS01: Tue 13:05–14:35 A219, M. Vargová - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2015
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/A2: Sat 7. 3. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sat 18. 4. 13:50–14:35 E1, 14:50–16:20 E1, 16:30–18:00 E1, Sat 23. 5. 16:30–18:00 E1, 18:10–19:40 E1, D. Smetanová
MAT_1/P01: Wed 9:40–11:10 E1, D. Smetanová
MAT_1/P02: Wed 11:25–12:55 E1, D. Smetanová
MAT_1/S01: Wed 14:50–16:20 A5, D. Smetanová
MAT_1/S02: Mon 9:40–11:10 B3, M. Vargová
MAT_1/S03: Mon 16:30–18:00 B2, M. Vacka
MAT_1/S04: Tue 16:30–18:00 B3, J. Krieg
MAT_1/S05: Fri 11:25–12:55 A4, J. Vysoká
MAT_1/S06: Wed 14:50–16:20 B4, M. Vacka
MAT_1/S07: Wed 14:50–16:20 B5, M. Vargová
MAT_1/S08: Wed 16:30–18:00 B5, M. Vargová
MAT_1/S09: Fri 13:05–14:35 B4, J. Vysoká
MAT_1/S10: Fri 14:50–16:20 B4, J. Vysoká - Prerequisites
- MAX_KOMBINOVANYCH(300) && MAX_PREZENCNICH(440)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2014
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/D3: Sat 11. 10. 13:05–14:35 E1, 14:50–16:20 E1, Sun 2. 11. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:10 E1, Sat 22. 11. 11:25–12:55 E1, 13:05–14:35 E1, 14:50–16:20 E1, D. Smetanová
MAT_1/K11: Sat 11. 10. 13:05–14:35 E1, 14:50–16:20 E1, Sun 2. 11. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:10 E1, Sat 22. 11. 11:25–12:55 E1, 13:05–14:35 E1, 14:50–16:20 E1, D. Smetanová
MAT_1/P01: Tue 14:50–16:20 E1, D. Smetanová
MAT_1/P02: Tue 16:30–18:00 E1, D. Smetanová
MAT_1/P03: Wed 14:50–16:20 E1, D. Smetanová
MAT_1/S01: Wed 16:30–18:00 E4, D. Smetanová
MAT_1/S02: Wed 18:10–19:40 E4, D. Smetanová
MAT_1/S03: Tue 18:10–19:40 E4, D. Smetanová
MAT_1/S04: Tue 14:50–16:20 E5, M. Vargová
MAT_1/S05: Thu 9:40–11:10 B5, J. Krieg
MAT_1/S06: Fri 11:25–12:55 B3, J. Krieg
MAT_1/S07: Thu 8:00–9:30 A6, M. Vacka
MAT_1/S08: Thu 9:40–11:10 A6, M. Vacka
MAT_1/S09: Thu 11:25–12:55 A6, M. Vacka
MAT_1/S10: Fri 13:05–14:35 A4, M. Vacka
MAT_1/S11: Fri 9:40–11:10 D516, J. Vysoká
MAT_1/S12: Fri 11:25–12:55 D516, J. Vysoká
MAT_1/S13: Fri 13:05–14:35 D516, J. Vysoká
MAT_1/S14: Thu 11:25–12:55 A7, D. Smetanová
MAT_1/S15: Thu 13:05–14:35 A5, J. Vysoká
MAT_1/S16: Fri 8:00–9:30 D516, J. Vysoká
MAT_1/S17: Wed 13:05–14:35 D515, F. Šíma
MAT_1/TP01: Mon 9:50–11:20 A219, M. Vargová
MAT_1/TS01: Mon 11:40–13:10 A219, M. Vargová - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2014
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Chládek, Ph.D. (lecturer)
doc. RNDr. Jaroslav Stuchlý, CSc. (lecturer)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/A1: Sat 8. 3. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sat 5. 4. 14:50–16:20 E1, 16:30–18:00 E1, 18:10–18:55 E1, Sat 26. 4. 8:00–9:30 E1, 9:40–11:10 E1, D. Smetanová
MAT_1/P01: Fri 8:00–9:30 E1, J. Krieg
MAT_1/P02: Wed 8:00–9:30 E1, J. Krieg
MAT_1/S01: Fri 9:40–11:10 B5, M. Vacka
MAT_1/S02: Fri 9:40–11:10 B4, J. Krieg
MAT_1/S03: Thu 11:25–12:55 D515, J. Vysoká
MAT_1/S04: Thu 14:50–16:20 D515, M. Vacka
MAT_1/S05: Thu 16:30–18:00 D515, P. Chládek
MAT_1/S06: Thu 18:10–19:40 D515, P. Chládek
MAT_1/S07: Thu 9:40–11:10 D415, J. Krieg
MAT_1/S08: Fri 11:25–12:55 B5, J. Vysoká
MAT_1/S09: Fri 13:05–14:35 B5, J. Krieg
MAT_1/S10: Fri 14:50–16:20 B5, J. Krieg
MAT_1/S11: Fri 11:25–12:55 B4, D. Smetanová
MAT_1/S12: Fri 13:05–14:35 B4, D. Smetanová
MAT_1/S13: Fri 14:50–16:20 B4, D. Smetanová
MAT_1/S14: Mon 14:50–16:20 D415, P. Chládek
MAT_1/S15: Mon 13:05–14:35 B2, P. Chládek
MAT_1/S16: Wed 9:40–11:10 B4, M. Vacka - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2013
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
doc. RNDr. Jaroslav Stuchlý, CSc. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/D2: Sat 12. 10. 12:46–13:30 B1, 13:40–15:10 B1, 15:15–16:45 B1, Sat 16. 11. 12:00–13:30 B1, 13:40–15:10 B1, Sat 7. 12. 8:00–9:30 B1, 9:40–11:10 B1, 12:00–13:30 B1, J. Krieg
MAT_1/K10_I: Sun 27. 10. 8:45–9:30 B2, 9:40–11:10 B2, 12:00–13:30 B2, Sat 16. 11. 8:00–9:30 B2, 9:40–11:10 B2, Sat 7. 12. 9:40–11:10 B2, 12:00–13:30 B2, 13:40–15:10 B2, J. Vysoká
MAT_1/K10_II: Sun 27. 10. 8:45–9:30 A2, 9:40–11:10 A2, 12:00–13:30 A2, Sat 16. 11. 8:00–9:30 A2, 9:40–11:10 A2, Sat 7. 12. 9:40–11:10 A2, 12:00–13:30 A2, 13:40–15:10 A2, D. Smetanová
MAT_1/P01: Mon 8:15–9:45 E1, J. Krieg
MAT_1/P02: Mon 9:55–11:25 E1, J. Krieg
MAT_1/S01: Mon 11:35–13:05 D516, D. Smetanová
MAT_1/S02: Mon 13:10–14:40 D416, D. Smetanová
MAT_1/S03: Mon 16:20–17:50 D616, D. Smetanová
MAT_1/S04: Mon 17:55–19:25 D516, D. Smetanová
MAT_1/S05: Tue 11:35–13:05 B5, J. Vysoká
MAT_1/S06: Tue 13:10–14:40 D616, J. Vysoká
MAT_1/S07: Tue 13:10–14:40 B5, J. Krieg
MAT_1/S08: Tue 16:20–17:50 B5, J. Vysoká
MAT_1/S09: Wed 9:55–11:25 D415, J. Krieg
MAT_1/S10: Wed 16:20–17:50 D616, J. Vysoká
MAT_1/S11: Thu 9:55–11:25 B2, J. Vysoká
MAT_1/S12: Thu 13:10–14:40 D616, J. Vysoká
MAT_1/S13: Thu 14:45–16:15 D616, J. Vysoká
MAT_1/S14: Fri 13:10–14:40 B4, J. Vysoká
MAT_1/S15: Fri 14:45–16:15 A6, J. Vysoká
MAT_1/S16: Mon 11:35–13:05 A2, J. Krieg
MAT_1/S17: Tue 14:45–16:15 A3, J. Vysoká - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 78 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
- Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2013
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/CCV: Sat 16. 3. Sat 15:15–16:45 A4, Sat 16:50–18:20 A4, Sat 18:25–19:55 A4, Sun 14. 4. Sun 8:00–9:30 A4, Sun 9:40–11:10 A4, Sun 28. 4. Sun 16:00–16:45 A4, Sun 16:50–18:20 A4, Sun 18:25–19:55 A4, Sat 11. 5. Sat 14:45–16:15 A4, Sat 16:20–17:50 A4, Sat 17:55–19:25 A4, Sun 26. 5. Sun 13:10–14:40 A4, Sun 14:45–16:15 A4, Sun 16:20–17:05 A4, M. Vacka
MAT_1/E1: Sat 16. 3. 15:15–16:45 E1, 16:50–18:20 E1, 18:25–19:55 E1, Sun 14. 4. 8:00–9:30 E1, 9:40–11:10 E1, Sun 28. 4. 16:01–16:45 E1, 16:50–18:20 E1, 18:25–19:55 E1, J. Krieg
MAT_1/P01: Wed 13:10–14:40 E1, J. Krieg
MAT_1/P02: Tue 14:45–16:15 E1, J. Krieg
MAT_1/S01: Tue 9:55–11:25 A7, J. Vysoká
MAT_1/S02: Mon 9:55–11:25 D415, J. Krieg
MAT_1/S03: Thu 9:55–11:25 A2, J. Krieg
MAT_1/S04: Mon 11:35–13:05 A5, R. Vejmelka
MAT_1/S05: Wed 11:35–13:05 A2, J. Vysoká
MAT_1/S06: Fri 13:10–14:40 D616, J. Krieg
MAT_1/S07: Mon 14:45–16:15 A6, J. Vysoká
MAT_1/S08: Thu 14:45–16:15 D616, M. Vacka
MAT_1/S09: Wed 14:45–16:15 D616, J. Vysoká
MAT_1/S10: Fri 14:45–16:15 D616, J. Krieg
MAT_1/S11: Mon 16:20–17:50 A7, J. Vysoká
MAT_1/S12: Tue 17:55–19:25 D415, J. Krieg
MAT_1/S13: Wed 14:45–16:15 B2, J. Krieg
MAT_1/S14: Thu 11:35–13:05 A2, M. Vacka
MAT_1/S15: Fri 13:10–14:40 B5, M. Vacka - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 % - Exam conditions
- Exam-written: max. 120 points. Grading scale: F – less than 30 p., X – (30 - 59) p., E – (60 - 68) p., D – (69 - 76) p., C – (77 - 85) p., B – (86 - 94) p., A – 95 and more p..
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2012
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/D1: Sat 20. 10. 15:15–16:45 B2, 16:50–18:20 B2, 18:25–19:55 B2, Sun 21. 10. 16:01–16:45 B1, 16:50–18:20 B1, 18:25–19:55 B1, Sun 9. 12. 16:50–18:20 B2, 18:25–19:55 B2, J. Krieg, Kombinovaná forma
MAT_1/K9: Sat 13. 10. 8:00–9:30 B2, 9:40–11:10 B2, Sun 4. 11. 15:15–16:45 B2, 16:50–18:20 B2, 18:25–19:10 B2, Sun 18. 11. 12:00–13:30 B2, 13:40–15:10 B2, 15:15–16:45 B2, J. Krieg, Kombinovaná forma
MAT_1/P01: Wed 13:10–14:40 E1, J. Krieg
MAT_1/S01: Tue 9:55–11:25 D516, P. Chládek
MAT_1/S02: Thu 8:15–9:45 B4, J. Vysoká
MAT_1/S03: Wed 14:45–16:15 D415, J. Vysoká
MAT_1/S04: Wed 16:20–17:50 B4, J. Krieg
MAT_1/S05: Wed 14:45–16:15 B3, J. Krieg
MAT_1/S06: Tue 8:15–9:45 D515, J. Krieg
MAT_1/S07: Thu 11:35–13:05 B4, J. Krieg
MAT_1/S08: Tue 11:35–13:05 D616, P. Chládek
MAT_1/S09: Thu 14:45–16:15 D616, J. Krieg
MAT_1/S10: Wed 9:55–11:25 D617, J. Vysoká - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 % - Exam conditions
- Exam-written: max. 120 points. Grading scale: F – less than 30 p., X – (30 - 59) p., E – (60 - 68) p., D – (69 - 76) p., C – (77 - 85) p., B – (86 - 94) p., A – 95 and more p..
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2012
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jaroslav Krieg
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/L1: Sat 17. 3. 15:15–16:45 B1, 16:50–18:20 B1, Sat 31. 3. 15:15–16:45 B1, 16:50–18:20 B1, 18:25–19:10 B1, Sun 15. 4. 8:00–9:30 B1, 9:40–11:10 B1, 12:00–13:30 B1, J. Vysoká, Kombinovaná forma
MAT_1/L2: Sat 10. 3. 8:00–9:30 B1, 9:40–11:10 B1, Sun 11. 3. 17:35–18:20 B1, 18:25–19:55 B1, Sun 29. 4. 16:50–18:20 B1, 18:25–19:55 B1, Sat 26. 5. 8:00–9:30 B1, 9:40–11:10 B1, M. Vacka, Kombinovaná forma
MAT_1/P01: Tue 8:15–9:45 B1, M. Vacka
MAT_1/P02: Tue 14:45–16:15 B1, M. Vacka
MAT_1/P03: Thu 9:55–11:25 B1, M. Vacka
MAT_1/S01: Tue 9:55–11:25 D617, F. Šíma
MAT_1/S02: Tue 8:15–9:45 D617, J. Vysoká
MAT_1/S03: Tue 9:55–11:25 A2, J. Vysoká
MAT_1/S04: Tue 11:35–13:05 A3, J. Vysoká
MAT_1/S05: Wed 8:15–9:45 D617, J. Vysoká
MAT_1/S06: Wed 9:55–11:25 A3, J. Vysoká
MAT_1/S07: Wed 11:35–13:05 A3, J. Vysoká
MAT_1/S08: Thu 8:15–9:45 D617, J. Vysoká
MAT_1/S09: Tue 16:20–17:50 A2, M. Vacka
MAT_1/S10: Fri 14:45–16:15 A4, D. Smetanová
MAT_1/S11: Fri 9:55–11:25 A2, D. Smetanová
MAT_1/S12: Fri 11:35–13:05 D617, D. Smetanová
MAT_1/S14: Thu 11:35–13:05 A3, J. Krieg
MAT_1/S15: Wed 11:35–13:05 A2, M. Vacka
MAT_1/S16: Tue 9:55–11:25 A3, J. Krieg
MAT_1/S17: Wed 8:15–9:45 A3, J. Krieg
MAT_1/S18: Tue 8:15–9:45 A3, J. Krieg - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms. After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 % - Exam conditions
- Exam-written: max. 120 points. Grading scale: F – less than 30 p., X – (30 - 59) p., E – (60 - 68) p., D – (69 - 76) p., C – (77 - 85) p., B – (86 - 94) p., A – 95 and more p..
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2011
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. František Šíma, Ph.D. (lecturer)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/ccv: Fri 30. 9. 13:50–17:55 D415, Sat 1. 10. 9:00–14:35 D415, Mon 3. 10. 8:15–9:00 B4, Tue 18. 10. 13:55–14:40 D111, J. Krieg, CCV studium
MAT_1/K8: Sat 22. 10. 13:40–15:10 B2, 15:15–16:45 B2, Sat 19. 11. 12:00–13:30 B2, 13:40–15:10 B2, 15:15–16:45 B2, 16:50–17:35 B2, Sat 3. 12. 8:00–9:30 B2, 9:40–11:10 B2, F. Šíma, Kombinovaná forma
MAT_1/L4: Sun 9. 10. 12:00–13:30 A4, 13:40–15:10 A4, Sun 13. 11. 16:01–16:45 A4, 16:50–18:20 A4, 18:25–19:55 A4, Sun 11. 12. 8:00–9:30 A4, Sat 7. 1. 8:00–9:30 A4, 9:40–11:10 A4, F. Šíma, Kombinovaná forma
MAT_1/P01: Tue 13:10–14:40 B1, P. Chládek
MAT_1/P02: Tue 8:15–9:45 A4, P. Chládek
MAT_1/S01: Mon 9:55–11:25 A6, J. Vysoká
MAT_1/S02: Mon 8:15–9:45 A6, J. Vysoká
MAT_1/S03: Wed 16:20–17:50 D415, J. Vysoká
MAT_1/S04: Mon 13:10–14:40 A2, J. Vysoká
MAT_1/S05: Thu 16:20–17:50 B2, P. Chládek
MAT_1/S06: Tue 11:35–13:05 A5, P. Chládek
MAT_1/S07: Wed 16:20–17:50 D516, F. Šíma
MAT_1/S08: Fri 11:35–13:05 D216, J. Krieg
MAT_1/S09: Fri 8:15–9:45 B4, M. Vacka - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The content of the course are basic concepts of linear algebra and mathematical analysis (differential and integral calculus of functions of one variable).
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension vector space, scalar product of vectors. 2. Matrices, rank matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
- Teacher's information
- http://cantor.vstecb.cz/mediawiki/index.php/MATEMATIKA_1
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2011
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (lecturer)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Ing. Petra Bednářová, Ph.D. (assistant) - Guaranteed by
- doc. RNDr. Jaroslav Stuchlý, CSc.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/ccv: Sat 16. 4. 8:15–9:45 D616, 9:55–11:25 D616, 12:10–13:40 D616, 13:50–15:20 D616, 15:30–17:00 D616, Sun 17. 4. 8:15–9:45 D616, 9:55–11:25 D616, 12:10–13:40 D616
MAT_1/KOPAK: Sat 16. 4. 8:15–9:45 A1, 9:55–11:25 A1, 12:10–13:40 A1, 13:50–15:20 A1, 15:30–17:00 A1, Sun 17. 4. 8:15–9:45 A1, 9:55–11:25 A1, 12:10–12:55 A1, J. Krieg
MAT_1/K7: Sun 6. 3. 12:10–13:40 A4, Sat 19. 3. 13:50–15:20 B4, Sun 20. 3. 12:10–13:40 A4, Sun 17. 4. 8:15–9:45 B4, 9:55–11:25 B4, Sat 23. 4. 8:15–9:45 B4, 9:55–11:25 B4, Sat 14. 5. 9:55–11:25 B1, M. Vacka
MAT_1/K8: Sat 19. 3. 15:30–17:00 B1, 17:10–18:40 B1, Sat 2. 4. 12:10–13:40 B1, Sun 1. 5. 8:15–9:45 B4, 9:55–11:25 B4, Sat 14. 5. 8:15–9:45 B1, Sun 22. 5. 12:10–13:40 B1, 13:50–14:35 B1, M. Vacka
MAT_1/01: Tue 14:25–15:55 Bazilika, M. Vacka
MAT_1/02: Wed 9:55–11:25 D515, J. Krieg
MAT_1/03: Wed 12:10–13:40 D616, J. Krieg
MAT_1/04: Wed 8:15–9:45 D617, J. Krieg
MAT_1/05: Thu 12:10–13:40 D516, F. Šíma
MAT_1/06: Wed 13:50–15:20 D515, F. Šíma
MAT_1/07: Thu 17:10–18:40 D616, F. Šíma
MAT_1/08: Wed 9:55–11:25 D516, F. Šíma
MAT_1/09: Wed 8:15–9:45 D415, F. Šíma
MAT_1/10: Wed 9:55–11:25 D416, M. Vacka - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The content of the course are basic concepts of analytic geometry, linear algebra and mathematical analysis (differential calculus of functions of one variable).
- Syllabus
- Analytic geometry (line, plane, position, and metric problems) Vector, vector space, linear combinations of vectors, linear dependence of vectors, basis and dimension of vector space Matrices, matrix operations, matrix rank, the inverse matrix Solving linear equations, Gauss´s elimination Determinants, Cramer's rule Real Functions of One Real Variable Algebraic functions and nonalgebraic functions, inverse function Continuity of function(bilateral and unilateral continuity, discontinuity points), Limits of function (intrinsic or limits, limit of their points in half-point, levels of double-sided) Derivative of functions, differentiation rules, derivative of composite functions and implicit tangent function graph L´Hospital´s rule.Asymptotes of the graph feature. Graph Sketching
- Literature
- required literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
- Teacher's information
- http://cantor.vstecb.cz/mediawiki/index.php/MATEMATIKA_1
MAT_1 Mathematics I
Institute of Technology and Business in České BudějoviceWinter 2010
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jaroslav Krieg (lecturer)
Mgr. Petr Janáček (seminar tutor)
RNDr. Petr Šebelík, CSc. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Jana Vysoká, Ph.D.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/K1: Mon 15. 11. 8:30–11:30 A4, Mon 29. 11. 8:30–11:30 A4, Mon 13. 12. 8:30–11:30 B4, Mon 3. 1. 8:30–11:30 A4, R. Vejmelka
MAT_1/K2: Mon 11. 10. 8:30–11:30 A4, Mon 25. 10. 8:30–11:30 A4, Mon 22. 11. 8:30–11:30 A4, Mon 20. 12. 8:30–11:30 A4, R. Vejmelka
MAT_1/K3: Sat 6. 11. 12:00–15:00 B1, Sun 7. 11. 12:45–16:30 Bazilika, Sun 5. 12. 8:30–11:30 B1, Sun 9. 1. 8:30–10:00 B1, R. Vejmelka
MAT_1/K4: Sun 7. 11. 12:45–16:30 Bazilika, Sun 21. 11. 12:00–15:00 A4, Sun 5. 12. 12:00–15:00 A4, Sun 19. 12. 12:00–15:00 A4, R. Vejmelka
MAT_1/K5: Sat 30. 10. 13:30–15:00 B1, Sun 7. 11. 12:45–13:30 Bazilika, 13:30–15:00 Bazilika, Sat 13. 11. 12:00–15:00 B1, Sat 27. 11. 8:30–11:30 B1, R. Vejmelka
MAT_1/K6: Sun 31. 10. 8:30–11:30 A4, Sun 7. 11. 12:45–16:30 Bazilika, Sat 13. 11. 8:30–11:30 A4, Sun 12. 12. 10:00–11:30 A4, R. Vejmelka
MAT_1/01: Mon 11:35–13:05 Bazilika, J. Krieg
MAT_1/02: Tue 11:10–12:40 Bazilika, J. Krieg
MAT_1/03: Thu 12:00–13:30 B3, R. Vejmelka
MAT_1/04: Wed 12:00–13:30 A3, R. Vejmelka
MAT_1/05: Tue 8:30–10:00 A2, P. Janáček
MAT_1/06: Tue 10:10–11:40 A2, P. Janáček
MAT_1/07: Wed 8:30–10:00 A6, R. Vejmelka
MAT_1/08: Wed 8:30–10:00 A5, J. Krieg
MAT_1/09: Wed 10:10–11:40 A5, J. Krieg
MAT_1/10: Wed 12:00–13:30 A5, J. Krieg
MAT_1/11: Wed 15:10–16:40 A5, J. Krieg
MAT_1/12: Wed 16:45–18:15 A5, J. Krieg
MAT_1/13: Thu 12:00–13:30 A4, J. Krieg
MAT_1/14: Thu 13:35–15:05 A4, J. Krieg
MAT_1/15: Thu 15:10–16:40 D416, J. Krieg
MAT_1/16: Thu 16:45–18:15 D416, J. Krieg
MAT_1/17: Mon 16:45–18:15 A3, M. Vacka
MAT_1/19: Tue 15:10–16:40 A2, M. Vacka
MAT_1/20: Wed 8:30–10:00 D616, J. Vysoká
MAT_1/21: Wed 10:10–11:40 A4, J. Vysoká
MAT_1/22: Thu 10:10–11:40 A1, J. Vysoká - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The content of the course are basic concepts of linear algebra and mathematical analysis (differential calculus of functions of one variable).
- Syllabus
- Analytic geometry (line, plane, position, and metric problems)
- Vector, vector space, linear combinations of vectors, linear dependence of vectors, basis and dimension of vector space
- Matrices, matrix operations, matrix rank, the inverse matrix
- Solving linear equations, Gauss´s elimination
- Determinants, Cramer's rule
- Real Functions of One Real Variable
- Algebraic functions and nonalgebraic functions, inverse function
- Continuity of function(bilateral and unilateral continuity, discontinuity points),
- Limits of function (intrinsic or limits, limit of their points in half-point, levels of double-sided)
- Derivative of functions, differentiation rules, derivative of composite functions and implicit tangent function graph
- L´Hospital´s rule.Asymptotes of the graph feature
- Asymptotes of graphs
- Graph Sketching
- Literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
- Teacher's information
- http://cantor.vstecb.cz/mediawiki/index.php/MATEMATIKA_1
MAT_1 Mathematics I
Institute of Technology and Business in České BudějoviceSummer 2010
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Radek Vejmelka (lecturer)
PaedDr. Ing. Eva Blažková (seminar tutor)
Mgr. Alexander Sandany (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor) - Guaranteed by
- RNDr. Jana Vysoká, Ph.D.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/01: Mon 16:25–17:55 Bazilika, R. Vejmelka
MAT_1/02: Tue 11:25–12:55 Bazilika, R. Vejmelka
MAT_1/03: Tue 14:50–16:20 A6, R. Vejmelka
MAT_1/04: Thu 8:00–9:30 A2, R. Vejmelka
MAT_1/05: Thu 9:35–11:05 A2, R. Vejmelka
MAT_1/06: Wed 8:00–9:30 A6, R. Vejmelka
MAT_1/07: Wed 9:35–11:05 A6, R. Vejmelka
MAT_1/08: Wed 11:25–12:55 A6, R. Vejmelka
MAT_1/09: Mon 11:25–12:55 A3, R. Vejmelka
MAT_1/10: Mon 13:15–14:45 A3, R. Vejmelka
MAT_1/11: Mon 8:00–9:30 A2, E. Blažková
MAT_1/12: Mon 9:35–11:05 A2, E. Blažková
MAT_1/13: Mon 11:25–12:55 A2, E. Blažková
MAT_1/14: Mon 13:15–14:45 A2, E. Blažková
MAT_1/15: Thu 11:25–12:55 A5, F. Šíma
MAT_1/16: Thu 9:35–11:05 D516, F. Šíma
MAT_1/17: Thu 14:50–16:20 A6, M. Vacka
MAT_1/20: Wed 9:35–11:05 A2, M. Vacka
MAT_1/21: Wed 11:25–12:55 A2, M. Vacka
MAT_1/22: Wed 13:15–14:45 A2, M. Vacka - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- Mathematics I deals with Linear Algebra and Calculus.
- Syllabus
- Analytic geometry
- Vectors
- Matrix algebra
- Linear Systems of Equations
- Determinant, Cramer's rule
- Real Functions of One Real Variable
- Basic functions
- Continuity of function
- Limits
- Derivatives
- L´Hospital´s rule
- Asymptotes of graphs
- Graph Sketching
- Literature
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
MAT_1 Mathematics I
Institute of Technology and Business in České BudějoviceWinter 2009
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Milan Vacka (lecturer)
RNDr. Jana Vysoká, Ph.D. (lecturer)
Mgr. Lucie Kubů (seminar tutor)
Mgr. Alexander Sandany (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
Mgr. Radek Trča (seminar tutor) - Guaranteed by
- RNDr. Ing. Jana Kalová
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- MAT_1/01: Mon 11:25–12:55 A4, J. Vysoká
MAT_1/02: Mon 13:15–14:45 A4, E. Blažková
MAT_1/03: Tue 8:00–9:30 A6, V. Kurcová
MAT_1/04: Tue 9:35–11:05 A6, V. Kurcová
MAT_1/05: Tue 11:25–12:55 A6, V. Kurcová
MAT_1/06: Tue 13:15–14:45 A6, V. Kurcová
MAT_1/07: Tue 14:50–16:20 A6, J. Vysoká
MAT_1/08: Tue 16:25–17:55 A6, J. Vysoká
MAT_1/09: Tue 18:15–19:45 A6, J. Vysoká
MAT_1/10: Wed 9:35–11:05 A2, A. Sandany
MAT_1/11: Thu 8:00–9:30 A4, L. Kubů
MAT_1/12: Thu 9:35–11:05 E7, L. Kubů
MAT_1/13: Thu 13:15–14:45 B5, F. Šíma
MAT_1/14: Thu 14:50–16:20 B5, A. Sandany
MAT_1/15: Thu 16:25–17:55 B5, A. Sandany
MAT_1/16: Thu 18:15–19:45 B5, A. Sandany
MAT_1/17: Thu 8:00–9:30 B4, R. Trča
MAT_1/18: Thu 9:35–11:05 B4, R. Trča
MAT_1/19: Thu 11:25–12:55 B4, R. Trča
MAT_1/20: Thu 13:15–14:45 B4, V. Kurcová
MAT_1/21: Thu 14:50–16:20 B4, V. Kurcová
MAT_1/22: Thu 16:25–17:55 B4, V. Kurcová
MAT_1/23: Thu 18:15–19:45 B4, V. Kurcová
MAT_1/24: Thu 11:25–12:55 D517, L. Kubů
MAT_1/25: Mon 14:00–15:30 P1, J. Vysoká
MAT_1/26: Tue 8:00–9:30 A1, M. Vacka
MAT_1/27: Tue 9:35–11:05 A1, M. Vacka
MAT_1/28: Tue 11:25–12:55 A1, J. Vysoká
MAT_1/29: Wed 7:30–9:00 P1, J. Vysoká
MAT_1/30: Wed 9:05–10:35 P1, J. Vysoká - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- Mathematics I deals with Linear Algebra and Calculus.
- Syllabus
- 1. Linear Algebra 2. Vectors 3. Matrix Algebra 4. Determinant 5. Linear Systems of Equations 6. Least Squares 7. Real Functions of One Real Variable 8. Basic Notions 9. Limits and Continuity 10. Derivatives 11. L´Hospital´s rule 12. Asymptotes of graphs 13. Graph Sketching
- Literature
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught each semester.
- Teacher's information
- http://cantor.vstecb.cz
MAT_1 Mathematics I
Institute of Technology and Business in České BudějoviceSummer 2009
- Extent and Intensity
- 0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Ing. Jana Kalová (lecturer)
prof. Pavel Kindlmann, DrSc. (seminar tutor) - Guaranteed by
- Institute of Technology and Business in České Budějovice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes (in Czech)
- Název studijního předmětu Matematika 1 Obor / kód předmětu EP, SM / MAT 1 Typ předmětu povinný Doporuč. ročník / semestr 1 / 1 Počet kreditů 5 Rozsah studijního předmětu přednáška 2 P seminář 2 S Způsob zakončení zkouška ano zápočet ano Podmínky o podmínkou získání zápočtu je průběžné plnění úkolů a úspěšné napsání zápočtového testu o podmínky pro úspěšné složení zkoušky budou oznámeny na začátku semestru Stručná anotace předmětu Obsahem předmětu jsou základní pojmy lineární algebry a matematické analýzy (diferenciální počet funkce jedné reálné proměnné). Tematické okruhy přednášek o Analytická geometrie v prostoru (přímka, rovina, polohové a metrické úlohy) o Vektor, vektorový prostor, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru o Matice, operace s maticemi, hodnost matice, inverzní matice o Řešení soustav lineárních rovnic, Gaussova eliminace o Determinanty, Cramerovo pravidlo o Funkce jedné reálné proměnné - definice a základní vlastnosti o Funkce algebraické a nealgebraické, funkce inverzní o Spojitost funkce (oboustranná a jednostranná spojitost, body nespojitosti) o Limita funkce (vlastní a nevlastní limita, limita ve vlastních bodech, v nevlastních bodech, limity oboustranné, jednostranné) o Derivace funkce, základní pravidla pro derivování, derivace funkce složené a implicitně zadané, tečna grafu funkce o L´Hospitalovo pravidlo o Vyšetřování průběhu funkce užitím diferenciálního počtu. Asymptoty grafu funkce. o Diferenciál funkce a jeho užití. Studijní literatura Povinná literatura: KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice mat
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught each semester.
The course is taught: every week.
MAT_1 Mathematics 1
Institute of Technology and Business in České BudějoviceWinter 2008
- Extent and Intensity
- 0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Ing. Jana Kalová (lecturer)
prof. Pavel Kindlmann, DrSc. (seminar tutor) - Guaranteed by
- Institute of Technology and Business in České Budějovice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes (in Czech)
- Název studijního předmětu Matematika 1 Obor / kód předmětu EP, SM / MAT 1 Typ předmětu povinný Doporuč. ročník / semestr 1 / 1 Počet kreditů 5 Rozsah studijního předmětu přednáška 2 P seminář 2 S Způsob zakončení zkouška ano zápočet ano Podmínky o podmínkou získání zápočtu je průběžné plnění úkolů a úspěšné napsání zápočtového testu o podmínky pro úspěšné složení zkoušky budou oznámeny na začátku semestru Stručná anotace předmětu Obsahem předmětu jsou základní pojmy lineární algebry a matematické analýzy (diferenciální počet funkce jedné reálné proměnné). Tematické okruhy přednášek o Analytická geometrie v prostoru (přímka, rovina, polohové a metrické úlohy) o Vektor, vektorový prostor, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru o Matice, operace s maticemi, hodnost matice, inverzní matice o Řešení soustav lineárních rovnic, Gaussova eliminace o Determinanty, Cramerovo pravidlo o Funkce jedné reálné proměnné - definice a základní vlastnosti o Funkce algebraické a nealgebraické, funkce inverzní o Spojitost funkce (oboustranná a jednostranná spojitost, body nespojitosti) o Limita funkce (vlastní a nevlastní limita, limita ve vlastních bodech, v nevlastních bodech, limity oboustranné, jednostranné) o Derivace funkce, základní pravidla pro derivování, derivace funkce složené a implicitně zadané, tečna grafu funkce o L´Hospitalovo pravidlo o Vyšetřování průběhu funkce užitím diferenciálního počtu. Asymptoty grafu funkce. o Diferenciál funkce a jeho užití. Studijní literatura Povinná literatura: KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice mat
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught each semester.
The course is taught: every week.
MAT_1 Matematika I
Institute of Technology and Business in České BudějoviceSummer 2008
- Extent and Intensity
- 0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jana Vysoká, Ph.D.
- Guaranteed by
- Institute of Technology and Business in České Budějovice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes (in Czech)
- Název studijního předmětu Matematika 1 Obor / kód předmětu EP, SM / MAT 1 Typ předmětu povinný Doporuč. ročník / semestr 1 / 1 Počet kreditů 5 Rozsah studijního předmětu přednáška 2 P seminář 2 S Způsob zakončení zkouška ano zápočet ano Podmínky o podmínkou získání zápočtu je průběžné plnění úkolů a úspěšné napsání zápočtového testu o podmínky pro úspěšné složení zkoušky budou oznámeny na začátku semestru Stručná anotace předmětu Obsahem předmětu jsou základní pojmy lineární algebry a matematické analýzy (diferenciální počet funkce jedné reálné proměnné). Tematické okruhy přednášek o Analytická geometrie v prostoru (přímka, rovina, polohové a metrické úlohy) o Vektor, vektorový prostor, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru o Matice, operace s maticemi, hodnost matice, inverzní matice o Řešení soustav lineárních rovnic, Gaussova eliminace o Determinanty, Cramerovo pravidlo o Funkce jedné reálné proměnné - definice a základní vlastnosti o Funkce algebraické a nealgebraické, funkce inverzní o Spojitost funkce (oboustranná a jednostranná spojitost, body nespojitosti) o Limita funkce (vlastní a nevlastní limita, limita ve vlastních bodech, v nevlastních bodech, limity oboustranné, jednostranné) o Derivace funkce, základní pravidla pro derivování, derivace funkce složené a implicitně zadané, tečna grafu funkce o L´Hospitalovo pravidlo o Vyšetřování průběhu funkce užitím diferenciálního počtu. Asymptoty grafu funkce. o Diferenciál funkce a jeho užití. Studijní literatura Povinná literatura: KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice mat
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught each semester.
The course is taught: every week.
MAT_1 Mathematics 1
Institute of Technology and Business in České BudějoviceWinter 2007
- Extent and Intensity
- 0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Ing. Jana Kalová
Mgr. Michaela Petrová
RNDr. Jana Vysoká, Ph.D. - Guaranteed by
- Institute of Technology and Business in České Budějovice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes (in Czech)
- Název studijního předmětu Matematika 1 Obor / kód předmětu EP, SM / MAT 1 Typ předmětu povinný Doporuč. ročník / semestr 1 / 1 Počet kreditů 5 Rozsah studijního předmětu přednáška 2 P seminář 2 S Způsob zakončení zkouška ano zápočet ano Podmínky o podmínkou získání zápočtu je průběžné plnění úkolů a úspěšné napsání zápočtového testu o podmínky pro úspěšné složení zkoušky budou oznámeny na začátku semestru Stručná anotace předmětu Obsahem předmětu jsou základní pojmy lineární algebry a matematické analýzy (diferenciální počet funkce jedné reálné proměnné). Tematické okruhy přednášek o Analytická geometrie v prostoru (přímka, rovina, polohové a metrické úlohy) o Vektor, vektorový prostor, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru o Matice, operace s maticemi, hodnost matice, inverzní matice o Řešení soustav lineárních rovnic, Gaussova eliminace o Determinanty, Cramerovo pravidlo o Funkce jedné reálné proměnné - definice a základní vlastnosti o Funkce algebraické a nealgebraické, funkce inverzní o Spojitost funkce (oboustranná a jednostranná spojitost, body nespojitosti) o Limita funkce (vlastní a nevlastní limita, limita ve vlastních bodech, v nevlastních bodech, limity oboustranné, jednostranné) o Derivace funkce, základní pravidla pro derivování, derivace funkce složené a implicitně zadané, tečna grafu funkce o L´Hospitalovo pravidlo o Vyšetřování průběhu funkce užitím diferenciálního počtu. Asymptoty grafu funkce. o Diferenciál funkce a jeho užití. Studijní literatura Povinná literatura: KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice mat
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught each semester.
The course is taught: every week.
MAT_1 Mathematics 1
Institute of Technology and Business in České BudějoviceSummer 2007
- Extent and Intensity
- 0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Jana Vysoká, Ph.D. (lecturer)
Mgr. Michaela Petrová (seminar tutor) - Guaranteed by
- Institute of Technology and Business in České Budějovice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes (in Czech)
- Název studijního předmětu Matematika 1 Obor / kód předmětu EP, SM / MAT 1 Typ předmětu povinný Doporuč. ročník / semestr 1 / 1 Počet kreditů 5 Rozsah studijního předmětu přednáška 2 P seminář 2 S Způsob zakončení zkouška ano zápočet ano Podmínky o podmínkou získání zápočtu je průběžné plnění úkolů a úspěšné napsání zápočtového testu o podmínky pro úspěšné složení zkoušky budou oznámeny na začátku semestru Stručná anotace předmětu Obsahem předmětu jsou základní pojmy lineární algebry a matematické analýzy (diferenciální počet funkce jedné reálné proměnné). Tematické okruhy přednášek o Analytická geometrie v prostoru (přímka, rovina, polohové a metrické úlohy) o Vektor, vektorový prostor, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, báze a dimenze vektorového prostoru o Matice, operace s maticemi, hodnost matice, inverzní matice o Řešení soustav lineárních rovnic, Gaussova eliminace o Determinanty, Cramerovo pravidlo o Funkce jedné reálné proměnné - definice a základní vlastnosti o Funkce algebraické a nealgebraické, funkce inverzní o Spojitost funkce (oboustranná a jednostranná spojitost, body nespojitosti) o Limita funkce (vlastní a nevlastní limita, limita ve vlastních bodech, v nevlastních bodech, limity oboustranné, jednostranné) o Derivace funkce, základní pravidla pro derivování, derivace funkce složené a implicitně zadané, tečna grafu funkce o L´Hospitalovo pravidlo o Vyšetřování průběhu funkce užitím diferenciálního počtu. Asymptoty grafu funkce. o Diferenciál funkce a jeho užití. Studijní literatura Povinná literatura: KAŇKA, M., COUFAL, J., KLŮFA, J.: Učebnice mat
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 52 115 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – oral 5 %
Exam – written 95 %
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught each semester.
The course is taught: every week.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2024
The course is not taught in winter 2024
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 Preparation for Lectures 13 Preparation for Seminars, Exercises, Tutorial 13 67 Preparation for the Final Test 20 26 Semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Presentation 2 2 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Full-time form - test max 70 points (+ max 30 points continuous assessment), combined form - test 100 points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week.
General note: Exitus. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2023
The course is not taught in winter 2023
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 Preparation for Lectures 13 Preparation for Seminars, Exercises, Tutorial 13 67 Preparation for the Final Test 20 26 Semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Presentation 2 2 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Full-time form - test max 70 points (+ max 30 points continuous assessment), combined form - test 100 points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week.
General note: Exitus. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2022
The course is not taught in winter 2022
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 Preparation for Lectures 13 Preparation for Seminars, Exercises, Tutorial 13 67 Preparation for the Final Test 20 26 Semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Presentation 2 2 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Full-time form - test max 70 points (+ max 30 points continuous assessment), combined form - test 100 points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week.
General note: Exitus. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicewinter 2021
The course is not taught in winter 2021
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Dana Smetanová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- The student masters the range of secondary school mathematics or the ZAM course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Exercise
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 Preparation for Lectures 13 Preparation for Seminars, Exercises, Tutorial 13 67 Preparation for the Final Test 20 26 Semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Presentation 2 2 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Full-time form - test max 70 points (+ max 30 points continuous assessment), combined form - test 100 points.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week.
General note: Exitus. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2021
The course is not taught in summer 2021
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Dana Smetanová, Ph.D. (lecturer)
- Guaranteed by
- Ing. Jaroslav Staněk, DiS.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- OBOR(CAP)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- recommended literature
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 89 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
MAT_1 Mathematics I
Institute of Technology and Business in České Budějovicesummer 2020
The course is not taught in summer 2020
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor) - Guaranteed by
- Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Prerequisites
- OBOR(CAP)
The student masters the range of secondary school mathematics or the ZAM course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- The aim of this course is to provide the students with the basic knowledge of algebra, differential and integral calculus of functions of one variable needed in the study of specialized subjects. Then the aim is also to provide and clarify the main methods and algorithms.
- Learning outcomes
- After the successful completing of the course, the student solves basic tasks of the course (counting with vectors, matrices and determinants, solving systems of linear equations, properties and graphs of elementary functions, calculation of limits and function derivation, investigating of function process, counting of primitive functions, idefinite integral, the direct method, per-partes, substitution method, calculation of definite integrals and content of a plane figure) individually.
- Syllabus
- 1. Vector, vector space, equality of vectors, counting with the vectors, linear combinations of vectors, linear dependence and independence of vectors, basis and dimension of vector space, scalar product of vectors. 2. Matrices, rank of matrices, matrix addition and multiplication, inverse matrix, Frobenius theorem, solving systems of linear equations using Gaussian method. 3. Determinants, Cramer's rule. 4. Functions of one real variable, domain and field of functional values, basic algebraic functions and non-algebraic. 5. Inverse functions, even and odd functions, inverse trigonometric functions. 6. Limit of function 7. Derivative function, basic rules for derivate, derivative compound function, function graph tangent. 8. L'Hospital's rule. The importance of first and second derivative for the function course (increasing, decreasing, convex, concave, local extrema and inflection points). 9. The primitive function, indefinite integral, direct integration. 10. The method of integration by-partes. 11. Substitution method. 12. Definite integral. 13. Calculation of a plane figure.
- Literature
- required literature
- DOŠLÁ, Zuzana a LIŠKA, Petr. Matematika pro nematematické obory: s aplikacemi v přírodních a technických vědách. 1. vydání. Praha: Grada Publishing, 2014. 304 stran. Expert. ISBN 978-80-247-5322-5.
- recommended literature
- MOUČKA, Jiří a Petr RÁDL. Matematika pro studenty ekonomie. In Expert. 2. vyd. Praha: Grada, 2015
- Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
- Kaňka, M., Coufal, J., Klůfa, J., Učebnice matematiky pro ekonomy, Praha, Ekopress, 2007, 198 stran, ISBN 978-80-86929-24-8
- Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2005, 1. vydání, ISBN 80-01-03323-6
- Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
- KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
- KLŮFA, Jindřich and Jan COUFAL. Matematika 1. Vyd. 1. Praha: Ekopress, 2003, 222 s. ISBN 80-86119-76-9. info
- DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
- Forms of Teaching
- Lecture
Seminar
Tutorial
Consultation - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Critical Thinking
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for Lectures 26 Preparation for Seminars, Exercises, Tutorial 26 89 Preparation for the Final Test 26 26 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 15 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
activity during seminar 30 % - Exam conditions
- Grading of the course: Activity during seminar: maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught each semester.
The course is taught: every week. - Teacher's information
- https://is.vstecb.cz/auth/do/5610/skripta/678006/1681523/682566/Matematika_I.pdf
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
- Enrolment Statistics (recent)