SMC_1a Mechanics in Civil Engineering I
Institute of Technology and Business in České Budějovicesummer 2024
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Ing. Pavel Kovács, Ph.D. (seminar tutor)
Ing. Josef Musílek, Ph.D. (seminar tutor) - Guaranteed by
- Ing. Josef Musílek, Ph.D.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- SMC_1a/PS4: Sun 28. 4. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:55 B1, Sun 12. 5. 14:50–16:20 B1, 16:30–18:00 B1, 18:10–19:40 B1, Sun 26. 5. 14:50–16:20 B1, 16:30–18:00 B1, P. Kovács
SMC_1a/P01: Wed 11:25–12:55 E1, J. Musílek
SMC_1a/S01: Thu 14:50–16:20 D416, P. Kovács
SMC_1a/S02: Thu 16:30–18:00 D415, P. Kovács
SMC_1a/S03: Wed 14:50–16:20 D515, P. Kovács
SMC_1a/S04: Wed 16:30–18:00 D515, P. Kovács - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- Students will learn types of load structures, and will know when to apply them. S/he will learn the problems of the dynamic behavior of structures.
- Learning outcomes
- Upon successful completion of the course the student can:
- calculate the center of gravity of the cross-section and determine the ellipse of inertia, determine degrees of freedom and static design
- determine the reaction of beams and calculate their size
- calculate the axial forces in the static fixed trusses
- determine the course of internal forces on statically certain solid beams (bracket, plain beam, inclined beam, beam, slab and wall)
- determine the effects of more complex statically certain structures (triangular arc and gerber beam)
- to explain the behavior of statically indeterminate constructions and will know in theory the ways of their calculation.
Based on the information and skills acquired, he / she will be able to decide on the choice and support of the load-bearing structure. - Syllabus
- Topics:
- 1. Physical quantities, scalars, vectors, physical size, strength as a vector, folding and unfolding forces
- 2. Torque to point and axis, a pair of static torque forces. The general spatial system of forces, the resulting effect, balance, equity
- 3. Degrees of width of a particle, board, body systems, static precision
- 4. Continuous load, strength, lonely moment and continuous torque load
- 5. Supporting and response of a particle, boards and bodies, supporting noncorect cases
- 6. Loads of building structures
- 7. Lattice structure, methods of calculation
- 8. Simple beam and bracket types of loads, calculation of reactions, internal forces
- 9. Refracted beam, internal forces
- 10. Kinematic method of calculating the response of complex systems
- 11. The center of gravity and moments of inertia of the cross-section
- 12. Fundamentals of dynamics of structures
- 13.The principles of solving statically inexplicit structures
- Literature
- required literature
- MUSILOVÁ, J. Mechanika. Brno: Masarykova univerzita, 2022. ISBN 978-80-280-0091-2.
- CUETO PRENDES, E. a D. GONZÁLEZ IBÁÑEZ. An introduction to structural mechanics for architects. Structural integrity (Springer). Cham, Switzerland: Springer, 2018. ISBN 978-3-319-72934-3.
- P. KOLLAR, Laszlo a Gabriella TARJAN. Mechanics of Civil Engineering Structures. Elsevier Science, 2020. ISBN 9780128203224.
- NĚMEC, I. TRCALA, M. a V. REK. Nelineární mechanika. Brno: Vysoké učení technické v Brně, nakladatelství VUTIUM, 2018. ISBN 978-80-214-5519-1.
- JÍRA, Aleš, Dagmar JANDEKOVÁ, Petra HÁJKOVÁ, Adéla HLOBILOVÁ, Eliška JANOUCHOVÁ, Luboš ŘEHOUNEK a Lukáš ZRŮBEK. Sbírka příklad stavební mechaniky. Praha: ČVUT v Praze, 2023. ISBN 978-80-01-06301-9.
- Forms of Teaching
- Lecture
Seminar
Tutorial - Teaching Methods
- Frontal Teaching
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for the Mid-term Test 10 17 Preparation for Lectures 14 Preparation for Seminars, Exercises, Tutorial 14 42 Preparation for the Final Test 20 37 Elaboration of two seminar papers 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 14 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
Test – mid-term 20 %
Seminar work 10 % - Exam conditions
- Celková klasifikace předmětu je následovná: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
- Enrolment Statistics (recent)
- Permalink: https://is.vstecb.cz/course/vste/summer2024/SMC_1a