G 2023

Systém pro měření vzájemné polohy pracující na základě digitálního zpracování obrazu

FRISCHER, Robert, Ondřej GRYCZ, Tomáš PRÁŠIL and Jiří NOVÁK

Basic information

Original name

Systém pro měření vzájemné polohy pracující na základě digitálního zpracování obrazu

Name (in English)

Reciprocal positioning system based on digital image processing

Authors

FRISCHER, Robert, Ondřej GRYCZ, Tomáš PRÁŠIL and Jiří NOVÁK

Edition

2023

Other information

Language

Czech

Type of outcome

Technicky realizované výsledky (prototyp, funkční vzorek)

Field of Study

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Organization unit

Institute of Technology and Business in České Budějovice

Keywords in English

Raspberry; digital camera; image processing; mutual position

Technical parameters

Napájení minipočítač: 5,0 V / 3A síťový zdroj Napájení Laser: Akumulátor 7,4 V / 5,2 Ah Materiál: Kryt 3D tisk PLA, šroubové spojení, lepení a vkládané vložky
Změněno: 10/11/2023 10:54, Barbora Kroupová

Abstract

V originále

Systém je založen na digitálním zpracování obrazu pomocí vlastních algoritmů a má větší dopad na výsledek projektu než původně zamýšlený online monitor elektrické sítě. Přesný systém pro měření dilatace dvou vztažných soustav má potenciál k samostatné ochraně ODV. Jedná se o dvojici vysílač / přijímač, kdy vysílačem je laserová dioda emitující monochromatický, koherentní svazek světla s průměrem svazku pod 1 cm. Laserový svazek je namířen na stínítko druhé části systému. Druhá část obsahuje digitální kameru a minipočítač. Kamera snímá světelný bod promítaný na stínítko senzoru a mapuje jeho pozici. Zdroj světla je fyzicky ukotven několik metrů od kamery, resp. na jiném podloží, než kamerový systém. Pokud dojde k pohybu zdroje světla vůči kameře, je tento pohyb zachycen změnou pozice promítaného bodu na stínítku senzoru. Pokud bereme v úvahu, že kamera je na stabilnějším podloží, je možné přesně říci, o kolik mm se pohnul zdroj světla vůči kalibrovanému výchozímu bodu. Pro stanovení pozice světelného bodu budou použity vlastní algoritmy pro binarizace a hranování obrazu a pro stanovení středu shluku. Předpokládáme přesnost stanovení pozice, resp. změny pozice světelného bodu na úrovni 0,025 mm a lepší. Tato hodnota je naprosto dostatečná pro kalibraci robotického ramene, které není vůči dilataci podlahy imunní, protože implementátor linky nemá k dispozici podobné zařízení, které by dilataci měřilo. Výstup výsledku bude sloužit k verifikaci pozice robotického ramene, kdy budou generovaná data průběžně ukládána do databáze kvůli stanovení míry dilatace podlahy v čase. Funkční vzorek bude využíván do konce projektu a stane se součástí výrobní linky MAKINO. Předpokládáme jeho využití minimálně po celou dobu udržitelnosti a taktéž jeho další rozvoj. Senzorické zařízení skládá z vysílače laserového svazku a vyhodnocovacího zařízení se software a digitální kamerou. Výzkumná nejistota spočívá v předpokládaném principu funkce, dále pak ve vyhodnocovacích algoritmech pro digitální obraz a mechanické odolnosti vůči vnějším vlivům. Princip funkce je uveden v popisu zařízení, komplikací by mohl být nezávislý pohyb nejen laserového emitoru, ale také vyhodnocovacího zařízení. Potom by byly obě soustavy v nespecifikovatelném stavu a výsledek dilatace by byl sice numericky velmi přesný, nicméně prakticky nepoužitelný. Nic podobného se ale nestalo, proto jsme nemuseli podobné situace řešit. Vyhodnocovací algoritmy vychází z již realizovaných projektů a byly vhodně upraveny. Komplikace by mohla nastat v případě, že by obraz na stínítku nebyl dostatečně kontrastní, popř. by byl rozmazaný vlivem přítomnosti vibrací, popř. byl ovlivněn vnějším světlem. Jedná se o technologii, kterou máme zvládnutou a je zde potřebné know-how. Uvedená komplikace nenastala, resp. nastala, ale bez jakéhokoliv vlivu na výsledek. Použité algoritmy byly dostatečně robustní na to, aby si s danou situací poradily. Vnější vlivy byly pravděpodobně největší neznámou. Předpokládali jsme vliv oleje, který je ve výrobě všudypřítomný a jeho eliminace je velmi obtížná. Předpokládáme periodické čištění senzoru, popř. softwarovou korekci případných vlivů (např. periodickou kalibraci, ideálně automatickou). Předpokládáme testy v komoře za různých teplot a sledování vlivů dilatace konstrukce senzoru – zde byl využit 3D tisk. Dále pak vliv teploty na objektiv kamery, resp. deformaci obrazu a vliv kondenzace par na objektivu při změně okolní teploty. Uvedené vlivy byly testovány v laboratoři pro dlouhodobé testy a nepotvrdil se žádných z uvedených vlivů.