2019
Infinitesimal Transformations of Locally Conformal Kähler Manifolds
CHEREVKO, Yevhen, Volodymyr BEREZOVSKI, Irena HINTERLEITNER a Dana SMETANOVÁZákladní údaje
Originální název
Infinitesimal Transformations of Locally Conformal Kähler Manifolds
Název česky
Infinitesimální transformace lokálně konformních Kählerových variet
Autoři
CHEREVKO, Yevhen (804 Ukrajina, garant), Volodymyr BEREZOVSKI (804 Ukrajina), Irena HINTERLEITNER (203 Česká republika) a Dana SMETANOVÁ (203 Česká republika, domácí)
Vydání
Mathematics, BASEL, SWITZERLAND, MDPI, 2019, 2227-7390
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10100 1.1 Mathematics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.747
Kód RIV
RIV/75081431:_____/19:00001689
Organizační jednotka
Vysoká škola technická a ekonomická v Českých Budějovicích
UT WoS
000482856500022
Klíčová slova česky
Hermiteovská varieta; localně konformní Kählerova varieta; Leeho forma; difeomorfismus; konformní transformace; Lieova derivace
Klíčová slova anglicky
Hermitian manifold; locally conformal Kähler manifold; Lee form; diffeomorphism; conformal transformation; Lie derivative
Změněno: 22. 4. 2020 14:22, Ing. Anna Palokha
V originále
The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of a Lee form. We have also obtained the system of partial differential equations for the transformations, and explored its integrability conditions. Hence we have got the necessary and sufficient conditions in order that the an LCK-manifold admits a group of conformal motions. We have also calculated the number of parameters which the group depends on. We have proved that a group of conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by corresponding Kählerian metric. We also established that an isometric group of an LCK-manifold is isomorphic to some subgroup of the homothetic group of the coresponding local Kählerian metric.
Česky
Článek je věnován infinitesimálním transformacím. Zjistili jsme, že LCK-variety nepřipouštějí netriviální infinitesimální projektivní transformace. Dále studujeme infinitesimální konformní transformace LCK-variet. Našli jsme výraz pro Lieovu derivaci Leeovy formy. Získali jsme také systém parciálních diferenciálních rovnic pro transformace a prozkoumali jsme podmínky jejich integrovatelnosti. Proto jsme dostali nezbytné a postačující podmínky, aby LCK-varieta připouštěla grupu konformních pohybů. Vypočítali jsme také počet parametrů, na kterých grupa závisí. Dokázali jsme, že skupina konformních pohybů přípustných LCK-varietou je izomorfní s homothetickou skupinou příslušnou odpovídající Kählerovské metrice. Také jsme zjistili, že izometrická skupina LCK-variet je izomorfní s nějakou podskupinou homothetické grupy odpovídající lokální Kählerově metrice.