J 2019

Considering seasonal fluctuations in equalizing time series by means of artificial neural networks for predicting development of USA and People ́s Republic of China trade balance

VRBKA, Jaromír, Petr ŠULEŘ, Veronika MACHOVÁ a Jakub HORÁK

Základní údaje

Originální název

Considering seasonal fluctuations in equalizing time series by means of artificial neural networks for predicting development of USA and People ́s Republic of China trade balance

Název česky

Zohlednění sezónních výkyvů ve vyrovnávání časových řad pomocí umělých neuronových sítí pro předpovídání vývoje obchodní bilance USA a Čínské lidové republiky

Vydání

Littera Scripta, České Budějovice, The Institute of Technology and Business in České Budějovice, 2019, 1805-9112

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

50200 5.2 Economics and Business

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Organizační jednotka

Vysoká škola technická a ekonomická v Českých Budějovicích

Klíčová slova česky

časové řady; umělé neuronové sítě; obchodní bilance; sezónní výkyvy; další kategoriální proměnná; predikce

Klíčová slova anglicky

time series; artificial neural networks; trade balance; seasonal fluctuations; additional categorical variable; prediction

Štítky

Změněno: 20. 1. 2020 09:18, Ing. Anna Palokha

Anotace

V originále

The aim of the contribution is to propose a methodology for taking into account the seasonal fluctuations in equalizing time series by means of artificial neural networks on the example of the USA and People´s Republic of China trade balance. Regression by means of neural structures is carried out in two alternatives, where the second calculation takes into account the monthly seasonality of the time series. The result indicates that the additional variable in the form of the month in which the value was measured enables more order and accuracy.

Česky

Cílem tohoto příspěvku je proto navrhnout metodiku zohlednění sezónních výkyvů při vyrovnání časových řad pomocí umělých neuronových sítí na příkladu obchodní bilance USA a Čínské lidové republiky. Provedena je regrese pomocí neuronových struktur, a to ve dvou rozměrech, kdy druhý výpočet bere v úvahu měsíční sezónnost časové řady. Výsledek naznačuje, že dodatečná proměnná v podobě měsíce měření hodnoty vnáší do vyrovnání časových řad větší řád a přesnost.

Přiložené soubory

Considering_seasonal_fluctuations_in_equalizing_time_series_by_means_of_.._.pdf
Požádat o autorskou verzi souboru