D 2013

On Regularization Procedure of Lagrangians Linear in First Derivatives in First-Order Field Theory

SMETANOVÁ, Dana

Basic information

Original name

On Regularization Procedure of Lagrangians Linear in First Derivatives in First-Order Field Theory

Name in Czech

O regularizaci lagrangiánů lineárních v prvních derivacích v teorii pole

Edition

1. vyd. Ostrava, Modern Mathematical Methods in Engineering Czech-Polish Colloquium : sborník příspěvků, p. 119-122, 4 pp. 2013

Publisher

VŠB - TU Ostrava

Other information

Language

English

Type of outcome

Proceedings paper

Field of Study

10101 Pure mathematics

Country of publisher

Czech Republic

Confidentiality degree

is not subject to a state or trade secret

Publication form

printed version "print"

Organization unit

Institute of Technology and Business in České Budějovice

ISBN

978-80-248-3234-0

Keywords (in Czech)

Lagrangián; Lepageův ekvivalent; Poincarého-Cartanova forma; Hamiltonovy rovnice; Eulerovy-Lagrangeovy rovnice; regularita

Keywords in English

Lagrangian; Lepagean equivalent; Poincaré-Cartan form; Hamilton equations; Euler-Lagrange equations; regularity

Tags

Changed: 19/3/2014 10:06, Mgr. Václav Karas

Abstract

V originále

Standard Hamiltonian formulation of field theory is found upon the Poincaré-Cartan form. Keeping the requirement on equivalence of the Hamilton and Euler-Lagrange equations as a (geometric) definition of regularity, and considering more general Lepagean equivalents of a Lagrangian then the Poincaré-Cartan equivalent, we obtain a regularity condition, depending not only on a Lagrangian but also on 2-contact parts of its Lepagean equivalents. In this way one gets a possibility to "regularize" many Lagrangian systems which are linear in first derivatives (singular in the standard sense). The theory is illustrated on an example.