VŠTE:PAP_a Flexibility and Strenght - Course Information
PAP_a Flexibility and Strenght
Institute of Technology and Business in České Budějovicewinter 2020
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Ing. Josef Musílek, Ph.D. (seminar tutor)
- Guaranteed by
- Ing. Josef Musílek, Ph.D.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice - Timetable of Seminar Groups
- PAP_a/P01: Tue 14:50–16:20 E4, J. Musílek
PAP_a/S01: Tue 16:30–18:00 E4, J. Musílek - Prerequisites (in Czech)
- FORMA(P)
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives supported by learning outcomes
- After completing the course the student will be able to state tension in cross-section of basic types of stress - pressure, tension, bending, shear, buckling and twisting. Further s/he can determine the deflection of basic structure by analyzing the bending equation.
- Learning outcomes
- Student understands solution of wall and slab structures and solution of wall and plate equation. After completing the course the student is able to evaluate and design solutions of wall and slab structures, he can determine the tension in the cross-section from the basic stresses - pressure, tension, bending, skidding, buckling pressure and twisting, and also determines the deflection of basic structures based on the analysis of the bending equation.
- Syllabus
- 1) Basic functions, concepts and assumptions of elasticity theory. Displacement. Deformation. Voltage. Saint-Venant`s principle. Linear theory of elasticity. Physical laws, working diagram. 2) Analysis of the rod - the basics. The connection components of the internal forces and stress components, components of the internal forces and external loads. 3) Simple tension and pressure - stress, strain, relocation. Effect of temperature field and the initial tension. 4) Simple bending angle and bending 5) Simple shear. Simple bending - calculation of normal stresses. Design of curved beams. 6) Transforming of the bent rods. Differential equations of the bending line. 7) Method of initial parameters and Mohr's method. Calculation of the tangential stress - a massive and thin-walled sections. The importance of shear stress in bending. The center of the skid. 8) Torsion free and bound. Big twist - solid and non-circular cross-section circular. Thin-walled cross-section of closed and open. 9) Compound load cases of the rod. The spatial and angle bending. Tension (compression) and bending . Eccentric tension and pressure. The core section. Design of beams in case of a compound stress. 10) Stability and buckling strength of compression members. Euler solutions. Critical power and voltage. Buckling strength approach. 11) The theory of strength and failure. Stress and strain in the point of the body. The principal stress in plane strain, elastic and plastic state. 12)Wall construction, types of stress, stress distribution, deformation 13) Plate structure, types of stress, stress distribution, deformation
- Literature
- required literature
- ŽÁK, J. Statika, pružnost a pevnost. Brno : VUT, 2005. ISBN 80-239-4965-9.
- NOVOTNÝ, R. Vybrané kapitoly ze stavební mechaniky VŠTE ČB předpokládané vydání 2009.
- recommended literature
- BITTNAROVÁ, J. Pružnost a pevnost 20 – příklady. Praha : ČVUT, 2003. ISBN 80-01-02709-0.
- ŽÁK, J., PĚNČÍK, J. Stavební mechanika: statika, pružnost a pevnost. Praha : Antikva, 2005. ISBN 80-239-4965-9.
- ŠEJNOHA, J., BITTNAROVÁ, J. Pružnost a pevnost 20. Praha : ČVUT, 2004. ISBN 80-01-03082-2.
- BITTNAROVÁ, J. Pružnost a pevnost 10 – příklady. Praha : ČVUT, 2003. ISBN 80-01-02742-2.
- ŠEJNOHA, J., BITTNAROVÁ, J. Pružnost a pevnost 10. Praha : ČVUT, 2003. ISBN 80-01-02743-0.
- Forms of Teaching
- Lecture
Seminar
Exercise
Excursion - language
Tutorial
Consultation
Teaching Block - lecture
Teaching Block - seminar
Teaching Block - tutorial - Teaching Methods
- Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Group Teaching - Collaboration
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
- Student Workload
Activities Number of Hours of Study Workload Daily Study Combined Study Preparation for presentation of the semester work 16 16 Preparation for the Mid-term Test 10 10 Preparation for Lectures 3 Preparation for Seminars, Exercises, Tutorial 3 3 Preparation for the Final Test 11 40 Presentation preparation and defense 15 15 Elaboration of a semester project 20 20 Attendance on Lectures 26 Attendance on Seminars/Exercises/Tutorial/Excursion 26 26 Total: 130 130 - Assessment Methods and Assesment Rate
- Exam – written 70 %
Test – mid-term 10 %
Seminary Work 20 % - Exam conditions
- Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
- Language of instruction
- Czech
- Teacher's information
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
- Enrolment Statistics (winter 2020, recent)
- Permalink: https://is.vstecb.cz/course/vste/winter2020/PAP_a