2023
Comparison of Linear Regression and Artificial Neural Network Models for the Dimensional Control of the Welded Stamped Steel Arms
KADNÁR, Milan, Peter KÁČER, Marta HARNIČÁROVÁ, Jan VALÍČEK, František TÓTH et. al.Základní údaje
Originální název
Comparison of Linear Regression and Artificial Neural Network Models for the Dimensional Control of the Welded Stamped Steel Arms
Autoři
KADNÁR, Milan (garant), Peter KÁČER, Marta HARNIČÁROVÁ (203 Česká republika, domácí), Jan VALÍČEK (203 Česká republika, domácí), František TÓTH, Marián BUJNA, Milena KUŠNEROVÁ (203 Česká republika, domácí), Rastislav MIKUŠ a Marian BORŽAN
Vydání
Mathematical machines and systems, Ukrajina, Institute of Mathematical Machines and Systems of the NAS of Ukraine, 2023, 1028-9763
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
20501 Materials engineering
Stát vydavatele
Ukrajina
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/75081431:_____/23:00002544
Organizační jednotka
Vysoká škola technická a ekonomická v Českých Budějovicích
UT WoS
000958805200001
Klíčová slova anglicky
welding; distortion; stamping; model; prediction; neural network
Změněno: 26. 4. 2023 12:31, Barbora Kroupová
Anotace
V originále
The production of parts by pressing and subsequent welding is commonly used in the automotive industry. The disadvantage of this method of production is that inaccuracies arising during pressing significantly affect the final dimension of the part. However, this can be corrected by the choice of the technological parameters of the following operation—welding. Suitably designed parameters make it possible to partially eliminate inaccuracies arising during pressing and thus increase the overall applicability of this technology. The paper is focused on the upper arm geometry of a car produced in this manner. There have been two neural networks proposed in which the optimal welding parameters are determined based on the stamped dimensions and the desired final dimensions. The Levenberg–Marquardt back-propagation algorithm and the Bayesian regularised back-propagation algorithm were used as the learning algorithm for ANNs in multi-layer feed-forward networks. The outputs obtained from the neural networks were compared with a linear prediction model based on a on the design of experiment methodology. The mean absolute percentage error of the linear regression model on the entire dataset was 3 × 10−3%. A neural network with Levenberg–Marquardt back-propagation learning algorithm had a mean absolute percentage error of 4 × 10−3. Similarly, a neural network with a Bayesian regularised back-propagation learning algorithm had a mean absolute percentage error of 3 × 10−3%.