SHAO, Dongwei, Sami AL OBAID, Alharbi SULAIMAN ALI, Josef MAROUŠEK, Manigandan SEKAR, Palanikumar GUNASEKAR, Thuy Lan Chi NGUYEN, Brindhadevi KATHIRVEL, Junfa WANG and Donghua JIANG. Prediction of the fuel spray characteristics in the combustion chamber with methane and TiO2 nanoparticles via numerical modelling. Fuel. Netherlands: Elsevier BV, Volume 326, neuvedeno, p. nestránkováno, 11 pp. ISSN 0016-2361. 2022.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Prediction of the fuel spray characteristics in the combustion chamber with methane and TiO2 nanoparticles via numerical modelling
Authors SHAO, Dongwei (guarantor), Sami AL OBAID, Alharbi SULAIMAN ALI, Josef MAROUŠEK (203 Czech Republic, belonging to the institution), Manigandan SEKAR, Palanikumar GUNASEKAR, Thuy Lan Chi NGUYEN, Brindhadevi KATHIRVEL, Junfa WANG and Donghua JIANG.
Edition Fuel, Netherlands, Elsevier BV, 2022, 0016-2361.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 20704 Energy and fuels
Country of publisher Netherlands
Confidentiality degree is not subject to a state or trade secret
WWW URL
RIV identification code RIV/75081431:_____/22:00002368
Organization unit Institute of Technology and Business in České Budějovice
UT WoS 000824767400002
Keywords in English Spray velocity; Methane; Combustion; Nanoparticles; Reaction rates; Numerical modelling
Tags RIV22, WOS
Changed by Changed by: Mgr. Nikola Petříková, učo 28324. Changed: 20/3/2023 20:06.
Abstract
In this study the methane combustion was analysed with the TiO2 nanoparticles. A series of the simulation runs were performed by varying the fuel inlet velocity. However, the oxidizer and the nanoparticles spray were maintained constant for the entire run. The spray velocity varied from 100 m/s to 200 m/s with titanium dioxide (TiO2) nanoparticles. Using the series of the governing equation and modified Navier Stokes equation the model has been developed with the aid of numerical workbench. Three different domains are generated for fuel, oxidizer and nanoparticles. The velocity of the air and nanoparticles were maintained at constant levels and varying only the spray velocity of the fuel. Based on the findings, the mass fraction of both fuel and formation of the CO2 were dependent on the spray velocity. As the spray velocity increases the turbulence in the combustion chamber increases which ensures the higher mixing of both air-fuel and nanoparticles. From the procured findings 175 m/s and 200 m/s were the ideal range for better combustion efficiency compared to 100 m/s and 150 m/s. The simulation results have ascertained the role of the spray velocity on the emissions and the combustion efficiency of the engine. It is hoped that obtained results can provide directions to work on the combustion of the methane with the nanoparticles at the optimized spray velocity.
PrintDisplayed: 28/3/2024 20:28