Detailed Information on Publication Record
2019
Considering seasonal fluctuations in equalizing time series by means of artificial neural networks for predicting development of USA and People ́s Republic of China trade balance
VRBKA, Jaromír, Petr ŠULEŘ, Veronika MACHOVÁ and Jakub HORÁKBasic information
Original name
Considering seasonal fluctuations in equalizing time series by means of artificial neural networks for predicting development of USA and People ́s Republic of China trade balance
Name in Czech
Zohlednění sezónních výkyvů ve vyrovnávání časových řad pomocí umělých neuronových sítí pro předpovídání vývoje obchodní bilance USA a Čínské lidové republiky
Authors
Edition
Littera Scripta, České Budějovice, The Institute of Technology and Business in České Budějovice, 2019, 1805-9112
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
50200 5.2 Economics and Business
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Organization unit
Institute of Technology and Business in České Budějovice
Keywords (in Czech)
časové řady; umělé neuronové sítě; obchodní bilance; sezónní výkyvy; další kategoriální proměnná; predikce
Keywords in English
time series; artificial neural networks; trade balance; seasonal fluctuations; additional categorical variable; prediction
Změněno: 20/1/2020 09:18, Ing. Anna Palokha
V originále
The aim of the contribution is to propose a methodology for taking into account the seasonal fluctuations in equalizing time series by means of artificial neural networks on the example of the USA and People´s Republic of China trade balance. Regression by means of neural structures is carried out in two alternatives, where the second calculation takes into account the monthly seasonality of the time series. The result indicates that the additional variable in the form of the month in which the value was measured enables more order and accuracy.
In Czech
Cílem tohoto příspěvku je proto navrhnout metodiku zohlednění sezónních výkyvů při vyrovnání časových řad pomocí umělých neuronových sítí na příkladu obchodní bilance USA a Čínské lidové republiky. Provedena je regrese pomocí neuronových struktur, a to ve dvou rozměrech, kdy druhý výpočet bere v úvahu měsíční sezónnost časové řady. Výsledek naznačuje, že dodatečná proměnná v podobě měsíce měření hodnoty vnáší do vyrovnání časových řad větší řád a přesnost.