Detailed Information on Publication Record
2019
Seismotectonics of the 2018 northern Osaka M6.1 earthquake and its aftershocks: joint movements on strike-slip and reverse faults in inland Japan
HALLO, Miroslav, Ivo OPRŠAL, Kimiyuki ASANO and František GALLOVIČBasic information
Original name
Seismotectonics of the 2018 northern Osaka M6.1 earthquake and its aftershocks: joint movements on strike-slip and reverse faults in inland Japan
Name in Czech
Seismotektonika zemětřesení M6.1 2018 a jeho dotřesů v Severní Osace : kombinované horizontální a reverzní zlomy v pevninské části Japonska
Authors
HALLO, Miroslav (guarantor), Ivo OPRŠAL (203 Czech Republic, belonging to the institution), Kimiyuki ASANO and František GALLOVIČ
Edition
Earth, Planets and Space, Berlin, Německo, Springer Nature, 2019, 1343-8832
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10505 Geology
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 3.056 in 2013
RIV identification code
RIV/75081431:_____/19:00001611
Organization unit
Institute of Technology and Business in České Budějovice
Keywords (in Czech)
"Seismotektonika; Osaka; Takatsuki; Zemětřesný zdroj; Bayesovská inverze ; Momentový tenzor; Pole napětí; Komplexní trhání; Kinki triangle; Zemětřesení Severní Osaka 2018"
Keywords in English
"Seismotectonics; Osaka; Takatsuki; Earthquake source; Bayesian inversion; Moment tensor; Stress field; Complex faulting; Kinki triangle; 2018 Northern Osaka earthquake"
Tags
Reviewed
Změněno: 22/4/2020 14:59, Ing. Anna Palokha
V originále
On June 18, 2018, an MJMA6.1 inland crustal earthquake occurred on the northeast edge of the Osaka basin, Japan. This event impacted the region by the maximum PGA larger than 0.9 g, and it was followed by a series of weaker aftershocks. The earthquakes were located near the Arima-Takatsuki Tectonic Line (ENE–WSW dextral strike-slip faults) and the Uemachi fault system (N–S reverse faults), hence the seismotectonic interpretations we assumed to be rather complex. Here we propose a seismotectonic model of this sequence based on seismological data and stress field considerations. In particular, we infer to a centroid moment tensor for the mainshock using Bayesian full-waveform inversion from strong motion records. The solution of Mw5.6 involved a significant CLVD component, which we interpreted as being due to rupture process on a complex fault geometry. Decomposition of the non-DC moment tensor into major and minor pure-shear moment tensors suggests a combination of strike-slip and reverse faulting mechanisms. We also analyzed the 108 strongest aftershocks with MJMA between 2.0 and 4.1 using records from broadband and short-period stations. Aftershocks’ moment tensors inverted from P-wave amplitudes exhibit mainly strike-slip and reverse faulting mechanisms, having significant spatial variations. The local stress field inverted from these mechanisms had a dominant maximum (compressional) principal stress 01 in ESE–WNW direction, while 02 = 03. Both ENE–WSW dextral strike-slip and N–S reverse faults can be active in such stress field as observed in the mainshock (without any need for stress spatial inhomogeneity). To conclude, the activated strike-slip fault is parallel to the Arima-Takatsuki Tectonic Line. The activated N–S reverse fault is dipping to east by 50° similarly as the Uemachi fault system. Joint shear movements on both of these faults contributed significantly to the total seismic moment of the mainshock.
In Czech
Kombinované horizontální a revezní zlomy v pevninské části Japonska jako Bayesiansé řešeni seismotektoniky zemětřesení M6.1 2018 a jeho dotřesů v Severní Osace.