V originále
"The precise experimental estimation of mechanical properties of rubber blends can be a very costly and time-consuming process. The present work explores the possibilities of increasing its efficiency by using artificial neural networks to study the mechanical behavior of these widely used materials. A multilayer feed-forward back-propagation artificial neural network model, with a strain and the carbon black content as input parameters and stress as an output parameter, has been developed to predict the uniaxial tensile response of vulcanized natural rubber blends with different contents of carbon black in the form of engineering stress-strain curves. A novel procedure has been created for the simulation of the optimized artificial neural network model with input datasets generated by a regression model of an experimental dependence of tensile strain-at-break on the carbon black content in the investigated blends. Errors of the prediction of experimental stress-strain curves, as well as of tensile strain-at-break, tensile stress-at-break and M100 tensile modulus were estimated for all simulated stress-strain curves. The present study demonstrated that the performance of a developed neural network model to predict the stress-strain curves of rubber blends with different contents of carbon black is also exceptionally high in the case of a network that had never learned the input data, which makes it a suitable tool for extensive use in practice."
Česky
Přesný experimentální odhad mechanických vlastností kaučukových směsí může být velmi nákladný a časově náročný proces. Současná práce zkoumá možnosti zvýšení efektivity pomocí umělých neuronových sítí pro studium mechanického chování těchto široce používaných materiálů. Byl vyvinout vícevrstvý model s umělou neuronovou sítí se zpětným šířením dopředného posunu, kde vstupními parametry bylo tahové napětí a různý obsah sazí a výstupním parametrem byla deformace pro predikci napěťově-deformační odezvy vulkanizovaných přírodních kaučukových směsí s různým obsahem sazí ve formě tahových křivek napětí a deformace. Byla vytvořena nová procedura pro simulaci optimalizovaného modelu umělé neuronové sítě se vstupními datovými soubory vytvořenými regresním modelem experimentální závislosti tahové deformace na obsahu sazí ve zkoumaných směsích. Pro všechny simulované křivky napětí a deformace byly odhadnuty chyby předpovědi experimentálních křivek napětí-deformace, stejně jako napětí tahu při přetržení, napětí v tahu a modul pružnosti M100. Tato studie ukázala, že výkon modelu vyvinutých neuronových sítí, který předpovídá tahové křivky napětí a deformace kaučukových směsí s různým obsahem sazí, je také výjimečně vysoký v případě sítě, která se nikdy nenaučila vstupní data, což z něj dělá vhodný nástroj pro rozsáhlé použití v praxi.