V originále
Standard Hamiltonian formulation of field theory is found upon the Poincaré-Cartan form. Keeping the requirement on equivalence of the Hamilton and Euler-Lagrange equations as a (geometric) definition of regularity, and considering more general Lepagean equivalents of a Lagrangian then the Poincaré-Cartan equivalent, we obtain a regularity condition, depending not only on a Lagrangian but also on 2-contact parts of its Lepagean equivalents. In this way one gets a possibility to "regularize" many Lagrangian systems which are linear in first derivatives (singular in the standard sense). The theory is illustrated on an example.
In Czech
Standardní Hamiltonova formulace teorie pole je založena na Poincarého-Cartanově formě. Podmínka regularity (z geometrického hlediska) je podmíněna požadavkem na ekvivalenci Hamiltonových a Eulerových-Lagrangeových rovnic. Použijeme-li obecnější ekvivalenty, než je Poincarého-Cartanova forma, Lepageovy ekvivalenty lagrangiánu, dostaneme podmínku regularity, která nezávisí jen na Lagrangiánu, ale i na 2-kontaktní části jeho ekvivalentech. Touto cestou můžeme "regularizovat" spoustu Lagrangeovských systémů, které jsou lineární v prvních derivacích (singulárních ve standardním smyslu). Teorie je ilustrována na příkladu.