SA_POS_1 Building construction I

Institute of Technology and Business in České Budějovice
summer 2020
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Ing. Aleš Kaňkovský (seminar tutor)
Guaranteed by
Ing. Jan Plachý, Ph.D.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
SA_POS_1/S01: Wed 14:50–16:20 B4, A. Kaňkovský
Prerequisites
OBOR ( CAP )
Basic knowledge of work in CAD systems and the creation of technical documentation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim is to obtain professional knowledge of foundations, substructure, vertical supporting structures, chimneys, expansion and construction systems. After successful completion of the course the student: a) knows to determinate a module coordination and to determine and define the structural systems of multi-storey buildings (structural wall system, skeleton, and combined), structural systems of hall buildings (construction systems stressed primarily in bending, compression mostly, mostly drawn) and the superstructure. b) knows the principles of dilated and non-bearing structures, and s/he can suggest expansion in terms of differential subsidence and volume changes. c) is able to describe the type of shallow and deep foundations and explain the underlying load distribution in the soil and its effect on settlement construction. d) is able to resolve the skeleton and massive bottom structure, lighting, underground construction, insulation and construction of underground structures without a basement. e) can apply the knowledge of the vertical supporting structures (technological point of view, design of structural walls and columns, openings in bearing walls). f) is able to characterize the types of chimneys, assess the impact of location on the stack is functioning correctly. Students can also evaluate the chimneys of the physical and chemical point of view and to propose a reconstruction or repair of the chimney.
Learning outcomes
After successful completion of the course the student: a) knows to determinate a module coordination and to determine and define the structural systems of multi-storey buildings (structural wall system, skeleton, and combined), structural systems of hall buildings (construction systems stressed primarily in bending, compression mostly, mostly drawn) and the superstructure. b) knows the principles of dilated and non-bearing structures, and s/he can suggest expansion in terms of differential subsidence and volume changes. c) is able to describe the type of shallow and deep foundations and explain the underlying load distribution in the soil and its effect on settlement construction. d) is able to resolve the skeleton and massive bottom structure, lighting, underground construction, insulation and construction of underground structures without a basement. e) can apply the knowledge of the vertical supporting structures (technological point of view, design of structural walls and columns, openings in bearing walls). f) is able to characterize the types of chimneys, assess the impact of location on the stack is functioning correctly. Students can also evaluate the chimneys of the physical and chemical point of view and to propose a reconstruction or repair of the chimney.
Syllabus
  • 1) Structural Systems I - multi-storey buildings 2) Structural Systems II - Indoor buildings 3) Dilation of buildings 4) Excavation and earthworks 5) Foundations I 6) Foundations II 7) Foundations III 8) Substructures 9) Vertical load-bearing structures I 10)Vertical load-bearing structures II 11) Vertical load-bearing structures III 12) Vertical load-bearing structures IV 13) Chimneys
Literature
    required literature
  • HÁJEK, P. a kol. Konstrukce pozemních staveb 1. Nosné konstrukce I. 3. vyd. Praha: ČVUT, 2007. ISBN 978-80-01-03589-4
  • HANÁK, M. Pozemní stavitelství: cvičení I. 6. přeprac. vyd. Praha: ČVUT, 2005. ISBN 80-01-03267-1
    recommended literature
  • NESTLE, H. a kol. Moderní stavitelství pro školu i praxi. Praha: Sobotáles, Praha, 2005. ISBN:80-86706-11-7
  • LORENZ, K. Nosné konstrukce I. Základy navrhování nosných konstrukcí. 1. vyd. Praha: ČVUT, 2005. ISBN 80-01-03168-3
  • MATOUŠOVÁ, D., SOLAŘ, J., Pozemní stavitelství I. 1. vyd. Ostrava : VŠB TU, 2005. ISBN 80-248-0830-7
  • MASOPUST, . Zakládání staveb M01. FAST CERM, Brno, ISBN 978-80-7204-538-9
  • MACEKOVÁ, . Pozemní stavitelství II(S) modul 02. Zakládání staveb. FAST CERM, Brno, ISBN 978-80-7204-520-4
Forms of Teaching
Lecture
Exercise
Excursion - language
Tutorial
Teaching Methods
Frontal Teaching
Project Teaching
Individual Work– Individual or Individualized Activity
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for the Mid-term Test13 
Preparation for Seminars, Exercises, Tutorial26 
Preparation for the Final Test13 
Working out a project26 
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion26 
Total:1300
Assessment Methods and Assesment Rate
Exam – written 70 %
Report 10 %
Project – individual 20 %
Exam conditions
Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 –30,F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses

  • Enrolment Statistics (recent)
  • Permalink: https://is.vstecb.cz/course/vste/summer2020/SA_POS_1