MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2021
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/PX01: Mon 9:40–11:10 E1, Z. Dušek
MAT_2/SX01: Wed 16:30–18:00 D416, Z. Dušek
MAT_2/X01: Sun 21. 3. 8:00–9:30 A2, 9:40–11:10 A2, 11:25–12:55 A2, Sun 11. 4. 13:05–14:35 A2, 14:50–16:20 A2, 16:30–18:00 A2, Sun 23. 5. 8:00–9:30 A2, 9:40–10:25 A2, D. Smetanová
Prerequisites
MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Excursion - language
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures13 
Preparation for Seminars, Exercises, Tutorial39115
Preparation for the Final Test26 
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
Teacher's information
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2020
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (seminar tutor)
Ing. Květa Papoušková (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/P01: Tue 13:05–14:35 E1, Z. Dušek
MAT_2/Q5: Sat 22. 2. 8:00–9:30 B2, 9:40–11:10 B2, Sat 4. 4. 8:00–9:30 B2, 9:40–11:10 B2, 11:25–12:55 B2, Sat 25. 4. 8:00–9:30 B1, 11:25–12:10 B1, J. Vysoká
MAT_2/S01: Mon 13:05–14:35 B4, Z. Dušek
MAT_2/S02: Wed 11:25–12:55 B5, J. Vysoká
MAT_2/S05: Fri 11:25–12:55 A4, K. Papoušková
MAT_2/S06: Tue 9:40–11:10 B5, K. Papoušková
MAT_2/S07: Wed 13:05–14:35 A4, D. Smetanová
MAT_2/S08: Wed 11:25–12:55 A4, D. Smetanová
MAT_2/S09: Thu 8:00–9:30 A4, D. Smetanová
Prerequisites
MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2019
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (lecturer)
Guaranteed by
Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CCV: Thu 24. 10. 13:05–14:35 A3, Fri 25. 10. 13:05–14:35 A3, Thu 31. 10. 13:05–14:35 A3, Fri 1. 11. 13:05–14:35 A3, Thu 14. 11. 13:05–14:35 A3, Fri 15. 11. 13:05–14:35 A3, Thu 21. 11. 13:05–14:35 A3, Z. Dušek
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2019
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Ing. Květa Papoušková (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/Q4: Sat 16. 2. 8:00–9:30 E1, 8:00–9:30 E1, 9:40–11:10 E1, 9:40–11:10 E1, Sat 2. 3. 8:00–9:30 A5, 8:00–9:30 A5, 9:40–11:10 A5, 9:40–11:10 A5, 11:25–12:55 A5, 11:25–12:55 A5, Sat 30. 3. 8:00–9:30 A5, 8:00–9:30 A5, 9:40–11:10 A5, 9:40–11:10 A5, 11:25–12:55 A5, 11:25–12:55 A5, D. Smetanová
MAT_2/P01: Tue 11:25–12:55 E1, J. Vysoká
MAT_2/S01: Wed 8:00–9:30 B5, J. Vysoká
MAT_2/S02: Wed 11:25–12:55 B5, J. Vysoká
MAT_2/S03: Fri 11:25–12:55 A6, K. Papoušková
MAT_2/S04: Fri 8:00–9:30 A6, K. Papoušková
MAT_2/S05: Fri 9:40–11:10 A6, K. Papoušková
Prerequisites
MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Excursion - language
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Competition
Group Teaching - Cooperation
Project Teaching
Brainstorming
Critical Thinking
Individual Work– Individual or Individualized Activity
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures13 
Preparation for Seminars, Exercises, Tutorial39115
Preparation for the Final Test26 
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
Teacher's information
Attendance in lessons is defined in a separate internal standard of ITB (Evidence of attendance of students at ITB). It is compulsory, except of the lectures, for full-time students to attend 70 % lesson of the subjet in a semester.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2018
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Guaranteed by
Ing. Jaroslav Staněk, DiS.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CCV: Fri 9. 11. 13:05–15:35 D516, Fri 16. 11. 13:05–15:35 D516, Mon 19. 11. 9:40–12:10 D516, Mon 26. 11. 9:40–12:10 D516, Fri 30. 11. 13:05–15:35 D516, D. Smetanová
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 320 student(s).
Current registration and enrolment status: enrolled: 0/320, only registered: 0/320
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2018
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Ing. Květa Papoušková (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Dušek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/P01: Wed 9:40–11:10 E1, D. Smetanová
MAT_2/Q3: Sat 17. 2. 8:00–9:30 B3, 9:40–11:10 B3, 11:25–12:55 B3, Sat 17. 3. 8:00–9:30 B3, 9:40–11:10 B3, 11:25–12:10 B3, Sat 14. 4. 13:05–14:35 B3, 14:50–16:20 B3, J. Vysoká
MAT_2/S01: Wed 14:50–16:20 A7, D. Smetanová
MAT_2/S02: Wed 8:00–9:30 B5, K. Papoušková
MAT_2/S03: Wed 11:25–12:55 B5, K. Papoušková
MAT_2/S04: Wed 13:05–14:35 B5, K. Papoušková
MAT_2/S05: Thu 8:00–9:30 B5, K. Papoušková
Prerequisites
MAX_KOMBINOVANYCH(80) && MAX_PREZENCNICH(240) && MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 320 student(s).
Current registration and enrolment status: enrolled: 0/320, only registered: 0/320
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2017
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Guaranteed by
doc. Ing. Zuzana Rowland, MBA, PhD.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CCV1: Sat 4. 11. 9:40–14:35 D416, Sun 5. 11. 9:40–12:55 D416, D. Smetanová
MAT_2/CCV2: Tue 24. 10. 8:00–11:10 D315, Tue 7. 11. 8:00–11:10 D315, Fri 24. 11. 9:40–11:10 A1, D. Smetanová
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 380 student(s).
Current registration and enrolment status: enrolled: 0/380, only registered: 0/380
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2017
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Vladislav Biba, Ph.D. (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Michaela Vargová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/Q2: Sat 4. 3. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, Sat 1. 4. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sat 13. 5. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_2/P01: Wed 9:40–11:10 E1, M. Vargová
MAT_2/S01: Wed 16:30–18:00 B4, M. Vargová
MAT_2/S02: Thu 11:25–12:55 B5, M. Vargová
MAT_2/S03: Thu 9:40–11:10 B4, J. Vysoká
MAT_2/S04: Tue 8:00–9:30 B4, J. Vysoká
MAT_2/S05: Wed 13:05–14:35 B5, J. Vysoká
MAT_2/S06: Wed 14:50–16:20 B5, V. Biba
MAT_2/TP01: Tue 11:25–12:55 A219, M. Vargová
MAT_2/TS01: Tue 13:05–14:35 A219, M. Vargová
Prerequisites
MAX_KOMBINOVANYCH(100) && MAX_PREZENCNICH(305) && MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 380 student(s).
Current registration and enrolment status: enrolled: 0/380, only registered: 0/380
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2016
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
Guaranteed by
doc. Ing. Zuzana Rowland, MBA, PhD.
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CCV01: Wed 19. 10. 8:00–12:55 D416, Wed 26. 10. 8:00–11:10 D416, Wed 2. 11. 8:00–12:10 D416, D. Smetanová
MAT_2/CCV02: Thu 27. 10. 11:25–12:55 A219, Thu 10. 11. 11:25–12:55 A219, Thu 24. 11. 11:25–12:55 A219, M. Vargová
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
Summer 2016
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Michaela Vargová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/D4_Q1: Sat 5. 3. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:10 B1, Sat 2. 4. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:55 B1, Sat 14. 5. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_2/P01: Wed 8:00–9:30 E1, M. Vargová
MAT_2/P02: Wed 14:50–16:20 E1, M. Vargová
MAT_2/S01: Thu 9:40–11:10 D415, M. Vargová
MAT_2/S02: Wed 11:25–12:55 D416, M. Vargová
MAT_2/S03: Tue 11:25–12:55 D617, M. Vacka
MAT_2/S05: Tue 13:05–14:35 D617, M. Vacka
MAT_2/S07: Wed 13:05–14:35 D515, M. Vargová
MAT_2/S12: Tue 9:40–11:10 D617, J. Vysoká
MAT_2/S13: Thu 11:25–12:55 B5, J. Vysoká
MAT_2/S14: Wed 11:25–12:55 A4, J. Vysoká
MAT_2/S15: Wed 9:40–11:10 A4, J. Krieg
MAT_2/TP01: Fri 8:00–9:30 A219, J. Krieg
MAT_2/TS01: Fri 9:40–11:10 A219, J. Krieg
Prerequisites
MAX_KOMBINOVANYCH(200) && MAX_PREZENCNICH(400) && MAT_1 Mathematics I
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
The capacity limit for the course is 600 student(s).
Current registration and enrolment status: enrolled: 0/600, only registered: 0/600
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2015
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
Guaranteed by
doc. Ing. Zuzana Rowland, MBA, PhD.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CAP_kombi: Sat 24. 10. 8:00–12:55 zrušená místnost E2, M. Vargová, výuka v rámci CCV
MAT_2/CAP_prez: Thu 22. 10. 13:05–16:20 A1, Thu 5. 11. 13:05–16:20 A1, Thu 19. 11. 13:05–16:20 A1, Thu 26. 11. 13:05–16:20 A1, Thu 3. 12. 13:05–16:20 A1, M. Vargová, výuka v rámci CCV
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2015
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Michaela Vargová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Michaela Vargová, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/K11_D3: Sat 11. 4. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:55 E1, Sun 12. 4. 8:00–9:30 E1, 9:40–11:10 E1, Sat 16. 5. 8:00–9:30 E1, 9:40–11:10 E1, 11:25–12:10 E1, D. Smetanová
MAT_2/P01: Tue 8:00–9:30 E1, D. Smetanová
MAT_2/P02: Tue 11:25–12:55 E1, D. Smetanová
MAT_2/S01: Tue 16:30–18:00 B2, M. Vargová
MAT_2/S02: Tue 8:00–9:30 B3, J. Krieg
MAT_2/S03: Wed 14:50–16:20 B2, J. Vysoká
MAT_2/S04: Wed 18:10–19:40 B3, J. Vysoká
MAT_2/S05: Wed 16:30–18:00 B3, J. Vysoká
MAT_2/S06: Wed 16:30–18:00 D616, M. Vacka
MAT_2/S07: Thu 16:30–18:00 B5, J. Vysoká
MAT_2/S08: Thu 18:10–19:40 B5, J. Vysoká
MAT_2/S09: Mon 14:50–16:20 B5, M. Vacka
MAT_2/TP01: Fri 9:40–11:10 A219, J. Krieg
MAT_2/TS01: Fri 11:25–12:55 A219, J. Krieg
Prerequisites
MAX_KOMBINOVANYCH(150) && MAX_PREZENCNICH(420)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2014
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CAP: Sat 15. 11. 9:40–11:55 B1, 13:05–14:35 B1, J. Krieg, CCV - výuka ve zkráceném kurzu v rámci CŽV
MAT_2/P01: Fri 9:40–11:10 E1, P. Chládek
MAT_2/S01: Fri 8:00–9:30 A5, D. Smetanová
MAT_2/S02: Tue 11:25–12:55 A6, D. Smetanová
MAT_2/S03: Wed 14:50–16:20 B2, J. Vysoká
MAT_2/S04: Wed 9:40–11:10 D515, J. Vysoká
Prerequisites
FORMA(P)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 160 student(s).
Current registration and enrolment status: enrolled: 0/160, only registered: 0/160
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2014
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Petr Chládek, Ph.D. (lecturer)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
doc. RNDr. Jaroslav Stuchlý, CSc. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/D2: Sun 9. 3. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:55 B1, Sun 6. 4. 15:35–16:20 B1, 16:30–18:00 B1, 18:10–19:40 B1, Sun 27. 4. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_2/K10: Sun 9. 3. 8:00–9:30 B1, 9:40–11:10 B1, 11:25–12:55 B1, Sun 6. 4. 15:35–16:20 B1, 16:30–18:00 B1, 18:10–19:40 B1, Sun 27. 4. 8:00–9:30 B1, 9:40–11:10 B1, D. Smetanová
MAT_2/P01: Wed 13:05–14:35 E1, J. Vysoká
MAT_2/P02: Wed 14:50–16:20 B1, J. Vysoká
MAT_2/S01: Wed 8:00–9:30 D516, J. Vysoká
MAT_2/S02: Thu 8:00–9:30 D616, M. Vacka
MAT_2/S03: Thu 18:10–19:40 D616, J. Vysoká
MAT_2/S04: Fri 8:00–9:30 D616, J. Vysoká
MAT_2/S05: Wed 9:40–11:10 D516, J. Vysoká
MAT_2/S06: Thu 9:40–11:10 D616, M. Vacka
MAT_2/S08: Fri 9:40–11:10 D616, J. Vysoká
MAT_2/S09: Wed 11:25–12:55 D516, M. Vacka
MAT_2/S10: Thu 11:25–12:55 D616, M. Vacka
MAT_2/S11: Thu 14:50–16:20 D516, J. Vysoká
Prerequisites
MAX_KOMBINOVANYCH(290) && MAX_PREZENCNICH(440)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 730 student(s).
Current registration and enrolment status: enrolled: 0/730, only registered: 0/730
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2013
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Dana Smetanová, Ph.D. (seminar tutor)
doc. RNDr. Jaroslav Stuchlý, CSc. (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Mgr. Radek Vejmelka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/CAP: Sun 17. 11. 8:00–15:10 B5, Sun 8. 12. 8:00–14:25 D416, J. Krieg, výuka v rámci CŽV
MAT_2/P01: Thu 8:15–9:45 B2, J. Krieg
MAT_2/S01: Thu 11:35–13:05 B2, M. Vacka
MAT_2/S02: Thu 14:45–16:15 D515, J. Krieg
Prerequisites
FORMA(P)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2013
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/D1: Sat 9. 3. 8:00–9:30 B2, 9:40–11:10 B2, Sat 6. 4. 12:00–13:30 B2, 13:40–15:10 B2, 15:15–16:45 B2, Sun 5. 5. 8:45–9:30 B2, 9:40–11:10 B2, 12:00–13:30 B2, J. Vysoká
MAT_2/K9: Sun 24. 3. 15:15–16:45 B1, 16:50–18:20 B1, 18:25–19:10 B1, Sat 6. 4. 8:00–9:30 B1, 9:40–11:10 B1, Sun 5. 5. 13:40–15:10 B1, 15:15–16:45 B1, 16:50–18:20 B1, J. Vysoká
MAT_2/P01: Thu 14:45–16:15 E1, J. Vysoká
MAT_2/S01: Thu 9:55–11:25 A4, J. Vysoká
MAT_2/S02: Thu 13:10–14:40 D616, J. Vysoká
MAT_2/S03: Wed 14:45–16:15 A6, P. Chládek
MAT_2/S04: Wed 16:20–17:50 D616, J. Vysoká
MAT_2/S05: Thu 8:15–9:45 A2, J. Vysoká
MAT_2/S06: Tue 16:20–17:50 A5, J. Krieg
Prerequisites
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2012
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Jaroslav Krieg (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/ccv: Sat 5. 1. 8:45–13:30 A2, Sun 6. 1. 8:45–13:30 A2, Sat 12. 1. 8:45–13:30 A2, Sat 19. 1. 9:00–10:00 A2, Sun 20. 1. 9:00–10:00 A2, Sat 23. 2. 9:00–10:00 A2, Sun 24. 2. 9:00–10:00 A2, J. Krieg, CCV - výuka v rámci CŽV
MAT_2/ccv_2: Sat 24. 11. 9:00–15:30 A2, Sun 25. 11. 9:00–14:40 A2, J. Vysoká, CCV - výuka v rámci CŽV
MAT_2/P01: Wed 11:35–13:05 B1, J. Vysoká
MAT_2/S01: Tue 9:55–11:25 D616, J. Vysoká
MAT_2/S02: Wed 16:20–17:50 A7, J. Vysoká
Prerequisites
FORMA(P)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2012
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Petr Chládek, Ph.D. (seminar tutor)
RNDr. Jaroslav Krieg (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Jana Vysoká, Ph.D. (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/ccv: Fri 6. 4. 15:30–18:40 D515, Sat 7. 4. 9:00–13:55 D515, Sat 21. 4. 9:55–11:30 B2, Sat 28. 4. 9:55–11:30 B2, J. Vysoká
MAT_2/ccv_MSBP: Sat 28. 7. 8:00–15:10 A6, Sun 29. 7. 8:00–14:25 A4, Sat 18. 8. 8:00–9:00 B5, J. Krieg
MAT_2/K8: Sun 11. 3. 12:00–13:30 B2, 13:40–15:10 B2, Sun 25. 3. 13:40–15:10 B2, 15:15–16:45 B2, Sun 13. 5. 8:00–9:30 B2, 9:40–11:10 B2, Sat 26. 5. 8:45–9:30 B2, 9:40–11:10 B2, F. Šíma, Kombinovaná forma
MAT_2/P01: Tue 9:55–11:25 B2, P. Chládek
MAT_2/P02: Wed 14:45–16:15 A1, P. Chládek
MAT_2/S01: Thu 14:45–16:15 D516, P. Chládek
MAT_2/S02: Wed 11:35–13:05 B4, J. Krieg
MAT_2/S03: Thu 11:35–13:05 A5, P. Chládek
MAT_2/S04: Thu 11:35–13:05 B2, J. Vysoká
MAT_2/S05: Thu 9:55–11:25 D415, J. Vysoká
MAT_2/S06: Tue 11:35–13:05 D616, J. Krieg
MAT_2/S07: Thu 14:45–16:15 B4, J. Krieg
Prerequisites
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Exam conditions
Exam - written: max. 120 points. Grading scale: F – less than 30 p., X – (30 - 59) p., E – (60 - 68) p., D – (69 - 76) p., C – (77 - 85) p., B – (86 - 94) p., A – 95 and more points.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms summer 2011, winter 2011, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2011
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Milan Vacka (lecturer)
RNDr. Jana Vysoká, Ph.D. (lecturer)
RNDr. Jaroslav Krieg (seminar tutor)
Guaranteed by
Mgr. Petr Chládek, Ph.D.
Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Timetable of Seminar Groups
MAT_2/ccv: Fri 11. 11. 16:00–18:15 A5, Sat 12. 11. 9:00–13:45 A5, Sun 13. 11. 9:00–12:45 A5, Wed 30. 11. 18:00–19:30 A4, Wed 14. 12. 18:00–19:25 A6, J. Vysoká, studium CCV
MAT_2/K2: Sun 9. 10. 8:00–9:30 B1, 9:40–11:10 B1, 12:00–13:30 B1, Sat 22. 10. 8:00–9:30 B1, 9:40–11:10 B1, 12:00–13:30 B1, 13:40–15:10 B1, 15:15–16:00 B1, J. Krieg, Kombinovaná forma
MAT_2/K7: Sun 2. 10. 12:00–13:30 B2, 13:40–15:10 B2, Sun 16. 10. 8:00–9:30 B2, 9:40–11:10 B2, Sat 26. 11. 13:40–15:10 B2, 15:15–16:45 B2, Sat 7. 1. 8:45–9:30 B2, 9:40–11:10 B2, J. Vysoká, Kombinovaná forma
MAT_2/P01: Fri 11:35–13:05 B1, J. Vysoká
MAT_2/S01: Wed 13:10–14:40 D415, J. Vysoká
MAT_2/S02: Wed 14:45–16:15 D415, J. Vysoká
MAT_2/S03: Thu 14:45–16:15 B2, J. Krieg
MAT_2/S04: Tue 17:55–19:25 D617, J. Krieg
Prerequisites
MAT_1 Mathematics I
Condition for MAT_2 course is the successful completion of the course MAT_1.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
Real Functions of Two (or more) Real Variables, Integrals, Differential Equations
Syllabus
  • 1. Real Functions of Two (or more) Real Variables, Domain, Graphs. 2. Partial Derivatives. 3. Geometrical conceptions. 4. Extrems of Functions of Two Variables, Hess´s Matrix. 5. Lagrange´s Method, Jacobi´s matrix. 6. Indefinite Integral. 7. Rules and Methods of Integration. 11. Definite Integral. 12. Geometrical Application of Definite Integral.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Teacher's information
http://cantor.vstecb.cz/mediawiki/index.php/MATEMATIKA_2
The course is also listed under the following terms summer 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
summer 2011
Extent and Intensity
2/2. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Jana Vysoká, Ph.D. (lecturer)
RNDr. Jaroslav Krieg (seminar tutor)
Mgr. František Šíma, Ph.D. (seminar tutor)
RNDr. Milan Vacka (seminar tutor)
Ing. Petra Bednářová, Ph.D. (assistant)
Guaranteed by
doc. RNDr. Jaroslav Stuchlý, CSc.
Department of Civil Engineering – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Contact Person: RNDr. Jana Vysoká, Ph.D.
Timetable of Seminar Groups
MAT_2/ccv: Fri 6. 5. 16:00–19:15 B3, Sat 7. 5. 9:00–14:00 B3
MAT_2/K1: Mon 28. 2. 12:10–15:20 B4, Mon 28. 3. 12:10–15:20 B4, Mon 9. 5. 12:10–14:35 B4, Mon 23. 5. 12:10–15:20 B4, J. Vysoká
MAT_2/K3: Sun 6. 3. 15:30–17:00 Bazilika, 17:10–18:40 Bazilika, Sun 13. 3. 8:15–9:45 A1, 9:55–11:25 A1, Sun 27. 3. 8:15–9:45 Bazilika, 9:55–11:25 Bazilika, Sat 9. 4. 12:10–13:40 A1, 13:50–14:35 A1, J. Krieg
MAT_2/K4: Sun 6. 3. 15:30–17:00 Bazilika, 17:10–18:40 Bazilika, Sun 13. 3. 12:10–13:40 A4, 13:50–15:20 A4, Sun 27. 3. 8:15–9:45 Bazilika, 9:55–11:25 Bazilika, Sun 22. 5. 14:35–15:20 A1, 15:30–17:00 A1, J. Krieg
MAT_2/K5: Sun 6. 3. 15:30–17:00 Bazilika, 17:10–18:40 Bazilika, Sun 13. 3. 15:30–17:00 B1, 17:10–18:40 B1, Sun 27. 3. 8:15–9:45 Bazilika, 9:55–11:25 Bazilika, Sat 21. 5. 15:30–17:00 B1, 17:10–18:40 B1, J. Krieg
MAT_2/01: Tue 12:45–14:15 Bazilika, J. Vysoká
MAT_2/02: Wed 17:10–18:40 D415, J. Krieg
MAT_2/03: Wed 15:30–17:00 D415, J. Krieg
MAT_2/04: Wed 9:55–11:25 B3, J. Vysoká
MAT_2/05: Wed 13:50–15:20 D416, J. Vysoká
MAT_2/06: Wed 12:10–13:40 A3, J. Vysoká
MAT_2/07: Wed 15:30–17:00 B2, F. Šíma
MAT_2/08: Thu 13:50–15:20 A2, F. Šíma
MAT_2/09: Thu 15:30–17:00 A2, F. Šíma
MAT_2/10: Wed 12:10–13:40 D415, M. Vacka
Prerequisites
MAT_1 Mathematics I
Condition for MAT_2 course is the successful completion of the course MAT_1.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives supported by learning outcomes
Real Functions of Two (or more) Real Variables, Integrals, Differential Equations
Syllabus
  • 1. Real Functions of Two (or more) Real Variables, Domain, Graphs. 2. Partial Derivatives. 3. Geometrical conceptions. 4. Extrems of Functions of Two Variables, Hess´s Matrix. 5. Lagrange´s Method, Jacobi´s matrix. 6. Indefinite Integral. 7. Rules and Methods of Integration. 11. Definite Integral. 12. Geometrical Application of Definite Integral.
Literature
    recommended literature
  • Charvát, J., Kelar, V., Šibrava, Z., Matematika 1, Sbírka příkladů, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 206 stran, ISBN 80-01-03323-6
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Teacher's information
http://cantor.vstecb.cz/mediawiki/index.php/MATEMATIKA_2
The course is also listed under the following terms winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2022

The course is not taught in winter 2022

Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (lecturer)
Guaranteed by
Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2021

The course is not taught in winter 2021

Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (lecturer)
Guaranteed by
Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
winter 2020

The course is not taught in winter 2020

Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Dušek, Ph.D. (lecturer)
Guaranteed by
Ing. Lukáš Polanecký
Study Department – Vice-Rector for Study Affairs – Rector – Institute of Technology and Business in České Budějovice
Supplier department: Department of Informatics and Natural Sciences – Faculty of Technology – Rector – Institute of Technology and Business in České Budějovice
Prerequisites
OBOR(CAP)
The student masters the differential calculus of functions of one variable. In addition, he/she masters the bases of the integral calculus. The student knows: the term of primitive function, the difference between definite and indefinite integrals, methods of calculation.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives supported by learning outcomes
The aim of the course is to complement and complete the knowledge of the integral calculus of functions of one variable, including applications for the calculation of content of areas, volumes of rotating solids and length of curves. The aim is also understanding and practical ability to solve ordinary differential equations of first order and some special types of equations of higher orders. After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Learning outcomes
After the successful completion of the course, the student is able to: individually solve integral roles; solve differential equations, analyze and propose a procedure of solving of practical problems related to the problem of integral calculus.
Syllabus
  • 1. Some more complicated indefinite integrals. 2. Decomposition of rational functions into partial fractions. 3. Integration of rational functions. 4. Special substitution. 5. Calculation of the volume of the rotating solid, determination of the length of the curve 6. Ordinary differential equations of the first order, separation of variables. 7. Homogeneous and first order linear equations. 8. Variation of parameters, integrating factor method. 9. Bernoulli´s differential equation. 10. Simple differential equations of the second order. 11. Variation of parameters for higher order equations. 12. Linear differential equations with constant coefficients. 13. Linear differential equations with special right side.
Literature
    recommended literature
  • Bubeník, F., Matematika 2, Česká technika - nakladatelství ČVUT, 2006, 1. vydání, 172 strany, ISBN 80-01-03535-2
  • Mathematics I / Neustupa Jiří. -- 2. přeprac. vyd. -- Praha : Vydavatelství ČVUT, 2004. -- 141 s. : il.
  • Higher Mathematics For Engineers And Physicists, Ivan Sokolnikoff and Elizabeth Sokolnikoff, 537 pp, http://www.freebookcentre.net/Mathematics/Basic-Mathematics-Books.html
  • Mathematics for engineers / František Bubeník. V Praze : České vysoké učení technické, 2007 324 s.. ISBN 978-80-01-03792-8
  • MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika I : pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2., dopl. vyd. Brno: VUTIUM, 2009, 339 pp. ISBN 978-80-214-3631-2. Obsah info
  • KAŇKA, Miloš. Sbírka řešených příkladů z matematiky : pro studenty vysokých škol. Vyd. 1. Praha: Ekopress, 2009, 298 s. ISBN 978-80-86929-53-8. Obsah info
  • CHARVÁT, Jura, Václav KELAR and Zdeněk ŠIBRAVA. Matematika 2 : sbírka příkladů. Vyd. 1. Praha: Nakladatelství ČVUT, 2006, 206 pp. ISBN 80-01-03537-9. Obsah info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 80-7200-587-1. info
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – written 70 %
activity during the lectures 30 %
Exam conditions
Grading of the course: First Test/Seminar Work/ … : maximum 30% (0-30 points), Final Test: maximum 70% (0-70 points). Successful graduates of the course have to get totally at least 70 points: A 100 – 90, B 89,99 – 84, C 83,99 – 77, D 76,99 – 73, E 72,99 – 70, FX 69,99 – 30, F 29,99 - 0.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.

MAT_2 Mathematics_2

Institute of Technology and Business in České Budějovice
Summer 2010

The course is not taught in Summer 2010

Extent and Intensity
2/3. 5 credit(s). Type of Completion: zk (examination).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Forms of Teaching
Lecture
Seminar
Tutorial
Consultation
Teaching Methods
Frontal Teaching
Group Teaching - Cooperation
Teaching Supported by Multimedia Technologies
Student Workload
ActivitiesNumber of Hours of Study Workload
Daily StudyCombined Study
Preparation for Lectures26 
Preparation for Seminars, Exercises, Tutorial52115
Attendance on Lectures26 
Attendance on Seminars/Exercises/Tutorial/Excursion2615
Total:130130
Assessment Methods and Assesment Rate
Exam – oral 5 %
Exam – written 95 %
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms summer 2011, winter 2011, summer 2012, winter 2012, summer 2013, winter 2013, summer 2014, winter 2014, summer 2015, winter 2015, Summer 2016, winter 2016, summer 2017, winter 2017, summer 2018, winter 2018, summer 2019, winter 2019, summer 2020, summer 2021.
  • Enrolment Statistics (recent)