
Sorting algorithms I.
Metodický koncept k efektivní podpoře klíčových odborných

kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková
strategie na vysoké škole

Sorting algorithms

• puts elements of a list in a certain order (alphabetical, numbered)

• Pair key-value – sorting according to key, value is not taken into
account

• Classification
• Stable vs. unstable – keeps order of values with the same key

• Type of sorting
• selection

• insertion

• exchanging

• merging

Sorting algorithms

• Simple algorithms
• Buble sort
• Heap sort
• Insertion sort
• Merge sort
• Quicksort
• Selection sort

• Algorithms based on other principle
• Bucket sort
• Radix sort
• Counting sort

Bubble sort

• Simple to implement

• Universal, local (in-place, no need of extra memory)

• The algorithm starts at the beginning of the data set. It compares the
first two elements, and if the first is greater than the second, it swaps
them. It continues doing this for each pair of adjacent elements to the
end of the data set. It then starts again with the first two elements,
repeating until no swaps have occurred on the last pass.

Bubble sort

procedure bubbleSort(A : list of sortable items)

 n = length(A)

 repeat

 swapped = false

 for i = 1 to n-1 inclusive do

 if A[i-1] > A[i] then

 swap(A[i-1], A[i])

 swapped = true

 end if

 end for

 until not swapped

end procedure

Heap sort

• a comparison-based sorting algorithm

• Not stable

• Using data structure heap and its properties

Heap sort

procedure heapsort(a, count) is
 input: an unordered array a of length count
 heapify(a, count)
 end ← count - 1
 while end > 0 do
 swap(a[end], a[0])
 (the heap size is reduced by one)
 end ← end - 1
 (the swap ruined the heap property, so restore it)
 siftDown(a, 0, end)

Insertion sort

• A simple sorting algorithm that builds the final sorted array (or list)
one item at a time

• Simple implementation

• Efficient for (quite) small data sets

• Efficient for data sets that are already substantially sorted

• Stable, on-line, in-place

Insertion sort

for i = 1 to length(A)

 j ← i

 while j > 0 and A[j-1] > A[j]

 swap A[j] and A[j-1]

 j ← j - 1

 end while

end for

