
Dictionaries and Hash tables
Metodický koncept k efektivní podpoře klíčových odborných

kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková
strategie na vysoké škole

Dictionary – ADT

• The dictionary ADT models a searchable collection of key-element items

• Dictionary ADT methods:
• findElement(k): if the dictionary has an item with key k, returns its element, else,

returns the special element NO_SUCH_KEY
• insertItem(k, o): inserts item (k, o) into the dictionary
• removeElement(k): if the dictionary has an item with key k, removes it from the

dictionary and returns its element, else returns the special element NO_SUCH_KEY
• size(), isEmpty()
• keys(), Elements()

• Applications:
• address book, credit card authorization, mapping host names (e.g., cs16.net) to

internet addresses (e.g., 128.148.34.101)

Log File

• A log file is a dictionary implemented by means of an unsorted
sequence
• We store the items of the dictionary in a sequence (based on a doubly-linked

lists or a circular array), in arbitrary order

• insertItem takes O(1)

• findElement and removeElement take O(n)

• The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common operations,
while searches and removals are rarely performed (e.g., historical
record of logins to a workstation)

Binary Search

• Binary search performs operation findElement(k) on a dictionary
implemented by means of an array-based sequence, sorted by key
• similar to the high-low game

• at each step, the number of candidate items is halved

• terminates after a logarithmic number of steps

 1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l m h

Lookup Table

• A lookup table is a dictionary implemented by means of a sorted
sequence
• We store the items of the dictionary in an array-based sequence, sorted by

key
• We use an external comparator for the keys

• findElement() O(logn)

• insertItem(k, o), removeElement O(n)
• The lookup table is effective only for dictionaries of small size or for

dictionaries on which searches are the most common operations,
while insertions and removals are rarely performed (e.g., credit card
authorizations)

Binary Search Tree

• A binary search tree is a binary tree storing keys (or key-element
pairs) at its internal nodes and satisfying the following property:
• Let u, v, and w be three nodes such that u is in the left subtree of v and w is in

the right subtree of v. We have
key(u) key(v) key(w)

• External nodes do not store items

• An inorder traversal of a binary search

trees visits the keys in increasing order

6

2

1 4

9

8

Hash table

• A hash function h maps keys of a given type to integers in a fixed interval [0,
N - 1]

• Example:
 h(x) = x mod Nh(x) – hodnota hashe

• The goal of a hash function is to uniformly disperse keys in the range [0, N -
1]

• A hash table for a given key type consists of
• Hash function h
• Array (called table) of size N

• A collision occurs when two keys in the dictionary have the same hash
value

• Collision handing schemes: Chaining, Open addressing

