
Priority Queues and Heaps
Metodický koncept k efektivní podpoře klíčových odborných

kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková
strategie na vysoké škole

Priority Queue – ADT

• A priority queue stores a collection of items

• An item is a pair
(key, element)

• Main methods of the Priority Queue ADT
• insertItem(k, o) - inserts an item with key k and element o
• removeMin() - removes the item with smallest key and returns its element

• Additional methods
• minKey(k, o) minElement() size() isEmpty()

• Applications:
• Standby flyers, Auctions, Stock market

Priority Queue

• Keys in a priority queue can be arbitrary objects on which an order is
defined

• Two distinct items in a priority queue can have the same key

• Mathematical concept of total order relation
• Reflexive property: x x

• Antisymmetric property: x y y x x = y

• Transitive property: x y y z x z

• Comparator – ADT
• A comparator encapsulates the action of comparing two objects according to

a given total order relation

Heap

• A heap is a binary tree storing keys at its internal
nodes and satisfying the following properties:
• Heap-Order: for every internal node v other than the root,

key(v) key(parent(v))

• Complete Binary Tree: let h be the height of the heap

• for i 0, … , h 1, there are 2i nodes of depth i

• at depth h 1, the internal nodes are to the left of the
external nodes

• The last node of a heap is the rightmost
internal node of depth h 1

2

5

9 7

6

Last node

Heaps and Priority Queue

• We can use a heap to implement a priority queue

• We store a (key, element) item at each internal node

• We keep track of the position of the last node

2, Adam

5, Bára

9, Dana 7, Emil

6, Cyril

Heap – inserting and deleting

• The insertion algorithm consists of three
steps
• Find the insertion node z (the new last

node)
• Store k at z and expand z into an internal

node
• Restore the heap-order property (discussed

next)

• The removal algorithm consists of three
steps
• Replace the root key with the key of the last

node w
• Compress w and its children into a leaf
• Restore the heap-order property (discussed

next)

2

5

9 7

6

z

Insertion node

2

5

9 7

6

z

w

w

Restoring the heap order

• upheap()
• After the insertion of a new key k, the heap-order property may be violated
• Algorithm upheap restores the heap-order property by swapping k along an upward

path from the insertion node
• Upheap terminates when the key k reaches the root or a node whose parent has a

key smaller than or equal to k

• downheap()
• After replacing the root key with the key k of the last node, the heap-order property

may be violated
• Algorithm downheap restores the heap-order property by swapping key k along a

downward path from the root
• Upheap terminates when key k reaches a leaf or a node whose children have keys

greater than or equal to k

