
Graph theory
Metodický koncept k efektivní podpoře klíčových odborných

kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková
strategie na vysoké škole

Graph theory

• A graph is a pair (V, E), where
• V is a set of nodes, called vertices

• E is a collection of pairs of vertices, called edges

• Vertices and edges are positions and store elements

• Types of edges
• Directed – ordered pair of vertices (u,v), first vertex u is the origin, second

vertex v is the destination

• Undirected - unordered pair of vertices (u,v)

• Loops – edge that connects a vertex to itself

• Multiple edges – between edges (u,v) is more than one edge

Graph theory

• Types of graphs
• Directed – all edges are direct
• Undirected – all edges are undirected
• Multigraph – contains multiple edges

• Terminology
• End vertices (or endpoints) of an edge
• Edges incident on a vertex
• Adjacent vertices
• Degree of a vertex
• Parallel edges
• Self-loop

Graph theory

• Path
• sequence of alternating vertices and edges
• begins with a vertex
• ends with a vertex
• each edge is preceded and followed by its endpoints

• Simple path
• path such that all its vertices and edges are distinct

• Cycle
• circular sequence of alternating vertices and edges
• each edge is preceded and followed by its endpoints

• Simple cycle
• cycle such that all its vertices and edges are distinct

Graph theory

• Electronic circuits
• Printed circuit board
• Integrated circuit

• Transportation networks
• Highway network
• Flight network

• Computer networks
• Local area network
• Internet
• Web

• Databases
• Entity-relationship diagram

Graph – ADT

• Accessor methods
• aVertex()

• incidentEdges(v)

• endVertices(e)

• isDirected(e)

• origin(e)

• destination(e)

• opposite(v,e)

• areAdjecent(v,w)

• Update methods
• insertVertex(o)

• insertEdge(v, w, o)

• insertDirectedEdge(v,
w, o)

• removeVertex(v)

• removeEdge(e)

• Generic methods
• numVertices()

• numEdges()

• vertices()

• edges()

Graph – DFS – depth-first search

• for traversing or searching tree or graph data structures. One starts at
the root (selecting some arbitrary node as the root in the case of a
graph) and explores as far as possible along each branch before
backtracking.
procedure DFS-iterative(G,v):
 let S be a stack
 S.push(v)
 while S is not empty
 v = S.pop()
 if v is not labeled as discovered:
 label v as discovered
 for all edges from v to w in G.adjacentEdges(v) do
 S.push(w)}

1

2

3 4

5 6

7

8

9

Graph – BFS – Breadth-first search

• traversing or searching tree or graph data structures. It starts at the
tree root (or some arbitrary node of a graph, sometimes referred to
as a 'search key') and explores the neighbor nodes first, before
moving to the next level neighbors.

Breadth-First-Search(Graph, root):
 create empty set S
 create empty queue Q
 add root to S
 Q.enqueue(root)
 while Q is not empty:
 current = Q.dequeue()
 if current is the goal:
 return current

 for each node n that is adjacent to
current:
 if n is not in S:
 add n to S
 n.parent = current
 Q.enqueue(n)

1

2

4 5

7 8

3

6

9

Graph – shortest path

• Dijkstra’s algorithm
• non-negative weights on the edges

• O(|V|2+|E|) – V number of vertices, E number of edges

• Bellman-Ford algorithm
• Graph can have negative edges

• O(V·E) – slower than Dijsktra’s alg.

• Floyd-Warshall algorithm
• Directed graph with non-negative edges

• Find shortest path between all vertices

• Time complexity – O(V3), memory complexity - O(V2)

Graph – shortest path

• Johnson’s algorithm
• find the shortest paths between all pairs of vertices in a sparse, edge

weighted, directed graph. It allows some of the edge weights to be negative
numbers

• O(V2 log2(V)+ VE)

