Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na vysoké škole

Europäische Union Evropská unie

Europäischer Fonds für regionale Entwicklung Evropský fond pro regionální rozvoj

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Types of edges
 - Directed ordered pair of vertices (*u*,*v*), first vertex *u* is the origin, second vertex *v* is the destination
 - Undirected unordered pair of vertices (*u*,*v*)
 - Loops edge that connects a vertex to itself
 - Multiple edges between edges (u,v) is more than one edge

- Types of graphs
 - Directed all edges are direct
 - Undirected all edges are undirected
 - Multigraph contains multiple edges
- Terminology
 - End vertices (or endpoints) of an edge
 - Edges incident on a vertex
 - Adjacent vertices
 - Degree of a vertex
 - Parallel edges
 - Self-loop

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Graph – ADT

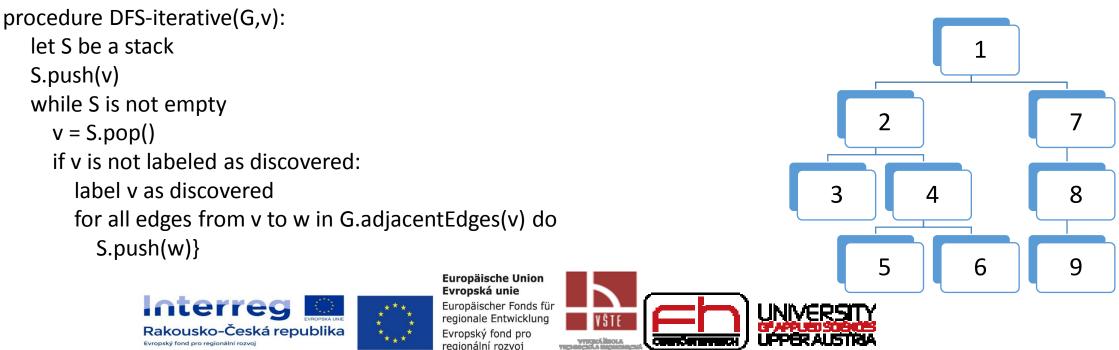
- Accessor methods
 - aVertex()
 - incidentEdges(v)
 - endVertices(e)
 - isDirected(e)
 - origin(e)
 - destination(e)
 - opposite(v,e)
 - areAdjecent(v,w)

- Update methods
 - insertVertex(o)
 - insertEdge(v, w, o)
 - insertDirectedEdge(v, w, o)
 - removeVertex(v)
 - removeEdge(e)

- Generic methods
 - numVertices()
 - numEdges()
 - vertices()
 - edges()

Graph – DFS – depth-first search

 for traversing or searching tree or graph data structures. One starts at the root (selecting some arbitrary node as the root in the case of a graph) and explores as far as possible along each branch before backtracking.

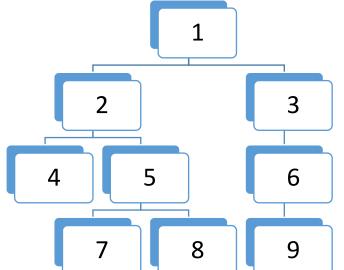


Graph – BFS – Breadth-first search

 traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key') and explores the neighbor nodes first, before moving to the next level neighbors.

Breadth-First-Search(Graph, root): create empty set S create empty queue Q add root to S Q.enqueue(root) while Q is not empty: current = Q.dequeue() if current is the goal: return current for each node n that is adjacent to current:

if n is not in S: add n to S n.parent = current Q.enqueue(n)



Graph – shortest path

- Dijkstra's algorithm
 - non-negative weights on the edges
 - $O(|V|^2+|E|) V$ number of vertices, E number of edges
- Bellman-Ford algorithm
 - Graph can have negative edges
 - $O(V \cdot E)$ slower than Dijsktra's alg.
- Floyd-Warshall algorithm
 - Directed graph with non-negative edges
 - Find shortest path between all vertices
 - Time complexity $O(V^3)$, memory complexity $O(V^2)$

Graph – shortest path

- Johnson's algorithm
 - find the shortest paths between all pairs of vertices in a sparse, edge weighted, directed graph. It allows some of the edge weights to be negative numbers
 - $O(V^2 \log_2(V) + VE)$

