
Algorithm, ADT
Metodický koncept k efektivní podpoře klíčových odborných

kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková
strategie na vysoké škole

Algorithm

• Exact instructions or procedures to solve the task type

• The theoretical principle of solving the problem (as opposed to
precise implementation a particular programming language).

• Properties
• Finality

• Generalities

• Determination

• Output (Resultativity)

• Elementarity

Algorithm

• Design methods
• Top down - Explain the progress of the solution to simpler operations until we

reach elementary steps

• Bottom up - from the elementary steps we create resources that ultimately
required to deal with the problem

• The combination of both – to the Top down approach we will add "a partial
step" bottom-up (use the library functions, high-level programming language
or system programming ...)

Algorithm

• Design methods
• Divide and conquer - divides the problem into sub-tasks (to be independent),

which is then solved, often implemented recursively or iteratively

• Greedy algorithm - solving optimization problems, always chooses a local
minimum in an attempt to find a global minimum

• Dynamic programming - divides the problem into sub-tasks (may be
dependent), which is then solved

• Backtracking - way of solving algorithmic problems based on a search of the
state tree, improved brute force search solution, based on depth-first search
of possible solutions

Algorithm

• Types of algorithms
• Recursive algorithms - use (call) themselves.

• Probabilistic (probabilistic) algorithms - make some decisions randomly or
pseudo-randomly.

• Parallel algorithms - split a job between multiple computers

• Genetic algorithms - work on the basis of imitation of biological evolutionary
processes

• Heuristic algorithm - trying to find only some appropriate approximation; It is
used in situations where available resources (eg time) are insufficient to use
exact algorithms (or if no suitable exact algorithms are known at all).

ADT – Abstract data type

• Data types that are independent of their own implementation

• Goal - Simplify and clarify the program that performs operations with
the given data type

• All ADTs can be implemented using basic algorithmic operations
(assignment, addition, multiplication, conditional jump, ...)

ADT

• Properties
• Generality of implementation - Once designed, ADT can be built-in and run smoothly

in any program.

• Exact description - The link between the implementation and the interface must be
unambiguous and complete.

• Simplicity - The user does not have to worry about internal implementation and
administration of ADT in memory.

• Encapsulation - The interface as a closed part, the user knows what ADT does, but
not how it does

• Integrity - The user can not interfere with the internal data structure

• Modularity

• If ADT is object-oriented programmed, these properties are usually met.

ADT

• Types of operations
• Constructor - Creates a new ADT value, constructing a valid internal

representation of the value based on the supplied parameters

• Selector - is used to retrieve values that are components or attributes of a
specific value of an abstract data type

• Modifier - Changes the value of the data type

